Ad
related to: list of pythagorean identities
Search results
Results From The WOW.Com Content Network
These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function , and then simplifying the resulting integral with a trigonometric identity.
The Pythagorean trigonometric identity, also called simply the Pythagorean identity, is an identity expressing the Pythagorean theorem in terms of trigonometric functions. Along with the sum-of-angles formulae , it is one of the basic relations between the sine and cosine functions.
There are several equivalent ways for defining trigonometric functions, and the proofs of the trigonometric identities between them depend on the chosen definition. The oldest and most elementary definitions are based on the geometry of right triangles and the ratio between their sides.
Visual proof of the Pythagorean identity: for any angle , the point (,) = (, ) lies on the unit circle, which satisfies the equation + =.Thus, + =. In mathematics, an identity is an equality relating one mathematical expression A to another mathematical expression B, such that A and B (which might contain some variables) produce the same value for all values of the variables ...
Trigonometry has been noted for its many identities, that is, equations that are true for all possible inputs. [83] Identities involving only angles are known as trigonometric identities. Other equations, known as triangle identities, [84] relate both the sides and angles of a given triangle.
List of derivatives and integrals in alternative calculi; List of equations; List of fundamental theorems; List of hypotheses; List of inequalities; Lists of integrals; List of laws; List of lemmas; List of limits; List of logarithmic identities; List of mathematical functions; List of mathematical identities; List of mathematical proofs; List ...
A few functions were common historically, but are now seldom used, such as the chord, versine (which appeared in the earliest tables [30]), haversine, coversine, [39] half-tangent (tangent of half an angle), and exsecant. List of trigonometric identities shows more relations between these functions.
This article lists mathematical identities, that is, identically true relations holding in mathematics. Bézout's identity (despite its usual name, it is not, properly speaking, an identity) Binet-cauchy identity