When.com Web Search

  1. Ads

    related to: robertson seymour graph embedding model template ppt background png gratis

Search results

  1. Results From The WOW.Com Content Network
  2. Robertson–Seymour theorem - Wikipedia

    en.wikipedia.org/wiki/RobertsonSeymour_theorem

    A minor of an undirected graph G is any graph that may be obtained from G by a sequence of zero or more contractions of edges of G and deletions of edges and vertices of G.The minor relationship forms a partial order on the set of all distinct finite undirected graphs, as it obeys the three axioms of partial orders: it is reflexive (every graph is a minor of itself), transitive (a minor of a ...

  3. Graph structure theorem - Wikipedia

    en.wikipedia.org/wiki/Graph_structure_theorem

    We point out that Theorem 2 is an exact structure theorem since the precise structure of K 5-free graphs is determined. Such results are rare within graph theory. The graph structure theorem is not precise in this sense because, for most graphs H, the structural description of H-free graphs includes some graphs that are not H-free.

  4. Graph minor - Wikipedia

    en.wikipedia.org/wiki/Graph_minor

    An edge contraction is an operation that removes an edge from a graph while simultaneously merging the two vertices it used to connect. An undirected graph H is a minor of another undirected graph G if a graph isomorphic to H can be obtained from G by contracting some edges, deleting some edges, and deleting some isolated vertices.

  5. Neil Robertson (mathematician) - Wikipedia

    en.wikipedia.org/wiki/Neil_Robertson_(mathematician)

    In 1993, with Seymour and Robin Thomas, Robertson proved the -free case for which the Hadwiger conjecture relating graph coloring to graph minors is known to be true. [ 8 ] In 1996, Robertson, Seymour, Thomas, and Daniel P. Sanders published a new proof of the four color theorem , [ 9 ] confirming the Appel–Haken proof which until then had ...

  6. Graph embedding - Wikipedia

    en.wikipedia.org/wiki/Graph_embedding

    An embedded graph uniquely defines cyclic orders of edges incident to the same vertex. The set of all these cyclic orders is called a rotation system.Embeddings with the same rotation system are considered to be equivalent and the corresponding equivalence class of embeddings is called combinatorial embedding (as opposed to the term topological embedding, which refers to the previous ...

  7. Paul Seymour (mathematician) - Wikipedia

    en.wikipedia.org/wiki/Paul_Seymour_(mathematician)

    Paul D. Seymour FRS (born 26 July 1950) is a British mathematician known for his work in discrete mathematics, especially graph theory.He (with others) was responsible for important progress on regular matroids and totally unimodular matrices, the four colour theorem, linkless embeddings, graph minors and structure, the perfect graph conjecture, the Hadwiger conjecture, claw-free graphs, χ ...

  8. Strong perfect graph theorem - Wikipedia

    en.wikipedia.org/wiki/Strong_perfect_graph_theorem

    The proof of the strong perfect graph theorem by Chudnovsky et al. follows an outline conjectured in 2001 by Conforti, Cornuéjols, Robertson, Seymour, and Thomas, according to which every Berge graph either forms one of five types of basic building block (special classes of perfect graphs) or it has one of four different types of structural ...

  9. Toroidal graph - Wikipedia

    en.wikipedia.org/wiki/Toroidal_graph

    A toroidal graph that cannot be embedded in a plane is said to have genus 1. The Heawood graph, the complete graph K 7 (and hence K 5 and K 6), the Petersen graph (and hence the complete bipartite graph K 3,3, since the Petersen graph contains a subdivision of it), one of the Blanuša snarks, [1] and all Möbius ladders are toroidal.

  1. Related searches robertson seymour graph embedding model template ppt background png gratis

    robertson seymour graph minorrobertson seymour theorem