Search results
Results From The WOW.Com Content Network
The lactose operon (lac operon) is an operon required for the transport and metabolism of lactose in E. coli and many other enteric bacteria.Although glucose is the preferred carbon source for most enteric bacteria, the lac operon allows for the effective digestion of lactose when glucose is not available through the activity of β-galactosidase. [1]
The enzyme's role in the classical E.coli lac operon remains unclear. [1] [3] However, the enzyme's cellular role may be to detoxify non-metabolizable pyranosides by acetylating them and preventing their reentry into the cell. [1] [4]
Galactoside permease is a protein coded by the lacY gene of the lac operon, and is found bound to the membrane of a cell for the purpose of binding galactoside molecules that have been solubilized. The protein is part of a system whose main function is to catalyze the accumulation and transport of lactose and other beta-galactosides across the ...
The LacY gene is a component of the lac operon that encodes lactose permease, a protein responsible for breaking down lactose into glucose and galactose, alongside transacetylase and beta galactosidase. The absence of lactose permease leads to the inability of lactose to enter the cell for further metabolic processes.
The lac operon of the model bacterium Escherichia coli was the first operon to be discovered and provides a typical example of operon function. It consists of three adjacent structural genes, a promoter, a terminator, and an operator. The lac operon is regulated by several factors including the availability of glucose and lactose.
[1] [2] cAMP-CAP is required for transcription activation of the lac operon. This requirement reflects the greater simplicity with which glucose may be metabolized in comparison to lactose. The cell "prefers" glucose, and, if it is available, the lac operon is not activated, even when lactose is present. This is an effective way of integrating ...
Catabolite repression was extensively studied in Escherichia coli. E. coli grows faster on glucose than on any other carbon source. For example, if E. coli is placed on an agar plate containing only glucose and lactose, the bacteria will use glucose first and lactose second.
Monod joined the Pasteur Institute in 1943 and Jacob in 1949. The experimental system ultimately used by Jacob and Monod was a common bacterium, E. coli, but the basic regulatory concept (described in the Lac operon article) that was discovered by Jacob and Monod is fundamental to cellular regulation for all organisms.