When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Empirical risk minimization - Wikipedia

    en.wikipedia.org/wiki/Empirical_risk_minimization

    Empirical risk minimization for a classification problem with a 0-1 loss function is known to be an NP-hard problem even for a relatively simple class of functions such as linear classifiers. [5] Nevertheless, it can be solved efficiently when the minimal empirical risk is zero, i.e., data is linearly separable .

  3. List of unsolved problems in statistics - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    The notable unsolved problems in statistics are generally of a different flavor; according to John Tukey, [1] "difficulties in identifying problems have delayed statistics far more than difficulties in solving problems." A list of "one or two open problems" (in fact 22 of them) was given by David Cox. [2]

  4. Statistical risk - Wikipedia

    en.wikipedia.org/wiki/Statistical_risk

    Statistical risk is a quantification of a situation's risk using statistical methods.These methods can be used to estimate a probability distribution for the outcome of a specific variable, or at least one or more key parameters of that distribution, and from that estimated distribution a risk function can be used to obtain a single non-negative number representing a particular conception of ...

  5. Minimax estimator - Wikipedia

    en.wikipedia.org/wiki/Minimax_estimator

    An example is shown on the left. The parameter space has just two elements and each point on the graph corresponds to the risk of a decision rule: the x-coordinate is the risk when the parameter is and the y-coordinate is the risk when the parameter is . In this decision problem, the minimax estimator lies on a line segment connecting two ...

  6. Mean squared error - Wikipedia

    en.wikipedia.org/wiki/Mean_squared_error

    The MSE either assesses the quality of a predictor (i.e., a function mapping arbitrary inputs to a sample of values of some random variable), or of an estimator (i.e., a mathematical function mapping a sample of data to an estimate of a parameter of the population from which the data is sampled).

  7. Monte Carlo method - Wikipedia

    en.wikipedia.org/wiki/Monte_Carlo_method

    Sawilowsky [56] distinguishes between a simulation, a Monte Carlo method, and a Monte Carlo simulation: a simulation is a fictitious representation of reality, a Monte Carlo method is a technique that can be used to solve a mathematical or statistical problem, and a Monte Carlo simulation uses repeated sampling to obtain the statistical ...

  8. Randomised decision rule - Wikipedia

    en.wikipedia.org/wiki/Randomised_decision_rule

    In a finite decision problem, the risk point of an admissible decision rule has either lower x-coordinates or y-coordinates than all other risk points or, more formally, it is the set of rules with risk points of the form (,) such that {(,):,} = (,). Thus the left side of the lower boundary of the risk set is the set of admissible decision rules.

  9. Generalization error - Wikipedia

    en.wikipedia.org/wiki/Generalization_error

    A seventh order polynomial function was fit to the training data. In the right column, the function is tested on data sampled from the underlying joint probability distribution of x and y. In the top row, the function is fit on a sample dataset of 10 datapoints. In the bottom row, the function is fit on a sample dataset of 100 datapoints.