When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hall effect - Wikipedia

    en.wikipedia.org/wiki/Hall_effect

    The Hall effect is due to the nature of the current in a conductor. Current consists of the movement of many small charge carriers, typically electrons, holes, ions (see Electromigration) or all three. When a magnetic field is present, these charges experience a force, called the Lorentz force. [10]

  3. Coulomb's law - Wikipedia

    en.wikipedia.org/wiki/Coulomb's_law

    If both charges have the same sign (like charges) then the product is positive and the direction of the force on is given by ^; the charges repel each other. If the charges have opposite signs then the product q 1 q 2 {\displaystyle q_{1}q_{2}} is negative and the direction of the force on q 1 {\displaystyle q_{1}} is − r ^ 12 {\textstyle ...

  4. Skin effect - Wikipedia

    en.wikipedia.org/wiki/Skin_effect

    The current density inside round wire away from the influences of other fields, as function of distance from the axis is given by: [6]: 38 Current density in round wire for various skin depths. Numbers shown on each curve are the ratio of skin depth to wire radius. The curve shown with the infinity sign is the zero frequency (DC) case.

  5. Electric charge - Wikipedia

    en.wikipedia.org/wiki/Electric_charge

    The movement of any of these charged particles constitutes an electric current. In many situations, it suffices to speak of the conventional current without regard to whether it is carried by positive charges moving in the direction of the conventional current or by negative charges moving in the opposite direction. This macroscopic viewpoint ...

  6. Ohm's law - Wikipedia

    en.wikipedia.org/wiki/Ohm's_law

    Ohm's law states that the electric current through a conductor between two points is directly proportional to the voltage across the two points. Introducing the constant of proportionality, the resistance, [1] one arrives at the three mathematical equations used to describe this relationship: [2]

  7. Space charge - Wikipedia

    en.wikipedia.org/wiki/Space_charge

    For electrons, the current density J (amperes per meter squared) is written: = = /. where is the anode current and S the surface area of the anode receiving the current; is the magnitude of the charge of the electron and is its mass. The equation is also known as the "three-halves-power law" or the Child–Langmuir law.

  8. Electric potential energy - Wikipedia

    en.wikipedia.org/wiki/Electric_potential_energy

    The electrostatic potential energy U E stored in a system of two charges is equal to the electrostatic potential energy of a charge in the electrostatic potential generated by the other. That is to say, if charge q 1 generates an electrostatic potential V 1 , which is a function of position r , then U E = q 2 V 1 ( r 2 ) . {\displaystyle U ...

  9. Charge (physics) - Wikipedia

    en.wikipedia.org/wiki/Charge_(physics)

    The thing that "flows" in the current is the "charge", the charge is the generator of the (local) symmetry group. This charge is sometimes called the Noether charge. Thus, for example, the electric charge is the generator of the U(1) symmetry of electromagnetism. The conserved current is the electric current.