Search results
Results From The WOW.Com Content Network
In mathematics and physics, the right-hand rule is a convention and a mnemonic, utilized to define the orientation of axes in three-dimensional space and to determine the direction of the cross product of two vectors, as well as to establish the direction of the force on a current-carrying conductor in a magnetic field.
Once upon a time, the symbol E (for electromotive force) was used to designate voltages. Then, every student learned the phrase ELI the ICE man as a reminder that: For an inductive (L) circuit, the EMF (E) is ahead of the current (I)
Both dl and dA have a sign ambiguity; to get the correct sign, the right-hand rule is used, as explained in the article Kelvin–Stokes theorem. For a planar surface Σ , a positive path element d l of curve ∂ Σ is defined by the right-hand rule as one that points with the fingers of the right hand when the thumb points in the direction of ...
The various FBI mnemonics (for electric motors) show the direction of the force on a conductor carrying a current in a magnetic field as predicted by Fleming's left hand rule for motors [1] and Faraday's law of induction. Other mnemonics exist that use a right hand rule for predicting resulting motion from a preexisting current and field.
Using the right hand rule to find the direction of the magnetic field. The direction of the magnetic field at a point, the direction of the arrowheads on the magnetic field lines, which is the direction that the "north pole" of the compass needle points, can be found from the current by the right-hand rule.
There is also a Fleming's left-hand rule (for electric motors). The appropriately handed rule can be recalled from the letter "g", which is in "right" and "generator". These mnemonics are named after British engineer John Ambrose Fleming, who invented them. An equivalent version of Fleming's right-hand rule is the left-hand palm rule. [2]
Fleming's left-hand rule. Fleming's left-hand rule for electric motors is one of a pair of visual mnemonics, the other being Fleming's right-hand rule for generators. [1] [2] [3] They were originated by John Ambrose Fleming, in the late 19th century, as a simple way of working out the direction of motion in an electric motor, or the direction of electric current in an electric generator.
The left-hand side is the time derivative of the momentum, and the right-hand side is the force, represented in terms of the potential energy. [9]: 737 Landau and Lifshitz argue that the Lagrangian formulation makes the conceptual content of classical mechanics more clear than starting with Newton's laws. [27]