Search results
Results From The WOW.Com Content Network
Angle notation can easily describe leading and lagging current: . [1] In this equation, the value of theta is the important factor for leading and lagging current. As mentioned in the introduction above, leading or lagging current represents a time shift between the current and voltage sine curves, which is represented by the angle by which the curve is ahead or behind of where it would be ...
Capacitive loads are leading (current leads voltage), and inductive loads are lagging (current lags voltage). If a purely resistive load is connected to a power supply, current and voltage will change polarity in step, the power factor will be 1, and the electrical energy flows in a single direction across the network in each cycle.
A flow of positive charges gives the same electric current, and has the same effect in a circuit, as an equal flow of negative charges in the opposite direction. Since current can be the flow of either positive or negative charges, or both, a convention is needed for the direction of current that is independent of the type of charge carriers ...
Illustration of the "reference directions" of the current (), voltage (), and power () variables used in the passive sign convention.If positive current is defined as flowing into the device terminal which is defined to be positive voltage, then positive power (big arrow) given by the equation = represents electric power flowing into the device, and negative power represents power flowing out.
The current entering any junction is equal to the current leaving that junction. i 2 + i 3 = i 1 + i 4. This law, also called Kirchhoff's first law, or Kirchhoff's junction rule, states that, for any node (junction) in an electrical circuit, the sum of currents flowing into that node is equal to the sum of currents flowing out of that node; or equivalently:
Current lagging voltage (quadrant I vector), current leading voltage (quadrant IV vector). These are all denoted in the adjacent diagram (called a power triangle). In the diagram, P is the active power, Q is the reactive power (in this case positive), S is the complex power and the length of S is the apparent power.
An unbalanced system is analysed as the superposition of three balanced systems, each with the positive, negative or zero sequence of balanced voltages. When specifying wiring sizes in a three-phase system, we only need to know the magnitude of the phase and neutral currents.
Materials and components that obey Ohm's law are described as "ohmic" [30] which means they produce the same value for resistance (R = V/I) regardless of the value of V or I which is applied and whether the applied voltage or current is DC (direct current) of either positive or negative polarity or AC (alternating current).