Search results
Results From The WOW.Com Content Network
However, the liquid–vapor boundary terminates in an endpoint at some critical temperature T c and critical pressure p c. This is the critical point. The critical point of water occurs at 647.096 K (373.946 °C; 705.103 °F) and 22.064 megapascals (3,200.1 psi; 217.75 atm; 220.64 bar). [3]
If one bases measurements on the van der Waals units [Boltzmann's name for the reduced quantities here], then he obtains the same equation of state for all gases. [...] Only the values of the critical volume, pressure, and temperature depend on the nature of the particular substance; the numbers that express the actual volume, pressure, and ...
David R. Lide (ed), CRC Handbook of Chemistry and Physics, 85th Edition, online version. CRC Press. Boca Raton, Florida, 2003; Section 6, Fluid Properties; Critical Constants. Also agrees with Celsius values from Section 4: Properties of the Elements and Inorganic Compounds, Melting, Boiling, Triple, and Critical Point Temperatures of the Elements
The inversion temperature in thermodynamics and cryogenics is the critical temperature below which a non-ideal gas (all gases in reality) that is expanding at constant enthalpy will experience a temperature decrease, and above which will experience a temperature increase.
The phenomena of superfluidity of a Bose gas and superconductivity of a strongly-correlated Fermi gas (a gas of Cooper pairs) are tightly connected to Bose–Einstein condensation. Under corresponding conditions, below the temperature of phase transition, these phenomena were observed in helium-4 and different classes of superconductors.
The reduced temperature of a fluid is its actual temperature, divided by its critical temperature: [1] = where the actual temperature and critical temperature are expressed in absolute temperature scales (either Kelvin or Rankine). Both the reduced temperature and the reduced pressure are often used in thermodynamical formulas like the Peng ...
The Lydersen method is a group contribution method for the estimation of critical properties temperature (T c), pressure (P c) and volume (V c).The method is named after Aksel Lydersen who published it in 1955. [1]
source field (e.g. P − P c / P c where P is the pressure and P c the critical pressure for the liquid-gas critical point, reduced chemical potential, the magnetic field H for the Curie point) χ: the susceptibility, compressibility, etc.; ∂ψ / ∂J ξ: correlation length: d: the number of spatial dimensions ψ(x →) ψ(y ...