When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Power (physics) - Wikipedia

    en.wikipedia.org/wiki/Power_(physics)

    Power is the rate with respect to time at which work is done; it is the time derivative of work: =, where P is power, W is work, and t is time.. We will now show that the mechanical power generated by a force F on a body moving at the velocity v can be expressed as the product: = =

  3. AC power - Wikipedia

    en.wikipedia.org/wiki/AC_power

    [1]: 3 The portion of instantaneous power that results in no net transfer of energy but instead oscillates between the source and load in each cycle due to stored energy is known as instantaneous reactive power, and its amplitude is the absolute value of reactive power.

  4. Poynting vector - Wikipedia

    en.wikipedia.org/wiki/Poynting_vector

    The above form for the Poynting vector represents the instantaneous power flow due to instantaneous electric and magnetic fields. More commonly, problems in electromagnetics are solved in terms of sinusoidally varying fields at a specified frequency. The results can then be applied more generally, for instance, by representing incoherent ...

  5. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    If a third mass is added, the Kepler problem becomes the three-body problem, which in general has no exact solution in closed form. That is, there is no way to start from the differential equations implied by Newton's laws and, after a finite sequence of standard mathematical operations, obtain equations that express the three bodies' motions ...

  6. Instanton - Wikipedia

    en.wikipedia.org/wiki/Instanton

    This classical solution of the Euclidean equations of motion is often named "kink solution" and is an example of an instanton. In this example, the two "vacua" (i.e. ground states) of the double-well potential, turn into hills in the Euclideanized version of the problem.

  7. Action principles - Wikipedia

    en.wikipedia.org/wiki/Action_principles

    The Newtonian and action-principle forms are equivalent, and either one can solve the same problems, but selecting the appropriate form will make solutions much easier. The energy function in the action principles is not the total energy (conserved in an isolated system), but the Lagrangian, the difference between kinetic and potential energy ...

  8. Mathematics of three-phase electric power - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_three-phase...

    The plotted line represents the variation of instantaneous voltage (or current) with respect to time. This cycle repeats with a frequency that depends on the power system. In electrical engineering, three-phase electric power systems have at least three conductors carrying alternating voltages that are offset in time by one-third of the period ...

  9. Hamiltonian (control theory) - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_(control_theory)

    Together, the state and costate equations describe the Hamiltonian dynamical system (again analogous to but distinct from the Hamiltonian system in physics), the solution of which involves a two-point boundary value problem, given that there are boundary conditions involving two different points in time, the initial time (the differential ...