When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    Terminal velocity depends on atmospheric drag, the coefficient of drag for the object, the (instantaneous) velocity of the object, and the area presented to the airflow. Apart from the last formula, these formulas also assume that g negligibly varies with height during the fall (that is, they assume constant acceleration).

  3. Escape velocity - Wikipedia

    en.wikipedia.org/wiki/Escape_velocity

    The escape velocity at a given height is times the speed in a circular orbit at the same height, (compare this with the velocity equation in circular orbit). This corresponds to the fact that the potential energy with respect to infinity of an object in such an orbit is minus two times its kinetic energy, while to escape the sum of potential ...

  4. Terminal velocity - Wikipedia

    en.wikipedia.org/wiki/Terminal_velocity

    Settling velocity W s of a sand grain (diameter d, density 2650 kg/m 3) in water at 20 °C, computed with the formula of Soulsby (1997). When the buoyancy effects are taken into account, an object falling through a fluid under its own weight can reach a terminal velocity (settling velocity) if the net force acting on the object becomes zero.

  5. Trajectory - Wikipedia

    en.wikipedia.org/wiki/Trajectory

    The initial velocity, v i, ... To find the angle giving the maximum height for a given speed calculate the derivative of the maximum height = ...

  6. Projectile motion - Wikipedia

    en.wikipedia.org/wiki/Projectile_motion

    The range and the maximum height of the projectile do not depend upon its mass. Hence range and maximum height are equal for all bodies that are thrown with the same velocity and direction. The horizontal range d of the projectile is the horizontal distance it has traveled when it returns to its initial height (=).

  7. Range of a projectile - Wikipedia

    en.wikipedia.org/wiki/Range_of_a_projectile

    v is the velocity at which the projectile is launched; g is the gravitational acceleration—usually taken to be 9.81 m/s 2 (32 f/s 2) near the Earth's surface; θ is the angle at which the projectile is launched; y 0 is the initial height of the projectile

  8. Hohmann transfer orbit - Wikipedia

    en.wikipedia.org/wiki/Hohmann_transfer_orbit

    The column labeled "LEO height" gives the velocity needed (in a non-rotating frame of reference centered on the earth) when 300 km above the Earth's surface. This is obtained by adding to the specific kinetic energy the square of the escape velocity (10.9 km/s) from this height. The column "LEO" is simply the previous speed minus the LEO ...

  9. Roughness length - Wikipedia

    en.wikipedia.org/wiki/Roughness_length

    This provides a method to calculate the roughness length by measuring the friction velocity and the mean wind velocity (at known elevation) in a given, relatively flat location (under neutral conditions) using an anemometer. [4] Of note is that, in this simplified form, the log wind profile is identical in form to the dimensional law of the wall.