Search results
Results From The WOW.Com Content Network
Gradient boosting is a machine learning technique based on boosting in a functional space, where the target is pseudo-residuals instead of residuals as in traditional boosting. It gives a prediction model in the form of an ensemble of weak prediction models, i.e., models that make very few assumptions about the data, which are typically simple ...
XGBoost works as Newton–Raphson in function space unlike gradient boosting that works as gradient descent in function space, a second order Taylor approximation is used in the loss function to make the connection to Newton–Raphson method. A generic unregularized XGBoost algorithm is:
LightGBM, short for Light Gradient-Boosting Machine, is a free and open-source distributed gradient-boosting framework for machine learning, originally developed by Microsoft. [4] [5] It is based on decision tree algorithms and used for ranking, classification and other machine learning tasks. The development focus is on performance and ...
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
Weka is a machine learning set of tools that offers variate implementations of boosting algorithms like AdaBoost and LogitBoost; R package GBM (Generalized Boosted Regression Models) implements extensions to Freund and Schapire's AdaBoost algorithm and Friedman's gradient boosting machine.
CatBoost [6] is an open-source software library developed by Yandex.It provides a gradient boosting framework which, among other features, attempts to solve for categorical features using a permutation-driven alternative to the classical algorithm. [7]
Stochastic gradient descent competes with the L-BFGS algorithm, [citation needed] which is also widely used. Stochastic gradient descent has been used since at least 1960 for training linear regression models, originally under the name ADALINE. [25] Another stochastic gradient descent algorithm is the least mean squares (LMS) adaptive filter.
In machine learning, early stopping is a form of regularization used to avoid overfitting when training a model with an iterative method, such as gradient descent. Such methods update the model to make it better fit the training data with each iteration.