Search results
Results From The WOW.Com Content Network
A stationary object (or set of objects) is in "static equilibrium," which is a special case of mechanical equilibrium. A paperweight on a desk is an example of static equilibrium. Other examples include a rock balance sculpture, or a stack of blocks in the game of Jenga, so long as the sculpture or stack of blocks is not in the state of collapsing.
A body is said to be "free" when it is singled out from other bodies for the purposes of dynamic or static analysis. The object does not have to be "free" in the sense of being unforced, and it may or may not be in a state of equilibrium; rather, it is not fixed in place and is thus "free" to move in response to forces and torques it may experience.
The moment of inertia is calculated with respect to the axis through the center of mass that is parallel with the torque. If the body shown in the illustration is a homogeneous disc, this moment of inertia is = /. If the disc has the mass 0,5 kg and the radius 0,8 m, the moment of inertia is 0,16 kgm 2. If the amount of force is 2 N, and the ...
The static equilibrium of a particle is an important concept in statics. A particle is in equilibrium only if the resultant of all forces acting on the particle is equal to zero. In a rectangular coordinate system the equilibrium equations can be represented by three scalar equations, where the sums of forces in all three directions are equal ...
Beam in static equilibrium: The sum of forces and moment are zero. Moments clockwise red; Moments counterclockwise blue; ... Beam in static equilibrium: The sum of ...
In order to distinguish between this and the situation when a system under equilibrium is perturbed and becomes unstable, it is preferable to use the phrase partly constrained here. In this case, the two unknowns V A and V C can be determined by resolving the vertical force equation and the moment equation simultaneously. The solution yields ...
Moments are usually defined with respect to a fixed reference point and refer to physical quantities located some distance from the reference point. For example, the moment of force, often called torque, is the product of a force on an object and the distance from the reference point to the object. In principle, any physical quantity can be ...
For an object to be in static equilibrium, not only must the sum of the forces be zero, but also the sum of the torques (moments) about any point. For a two-dimensional situation with horizontal and vertical forces, the sum of the forces requirement is two equations: Σ H = 0 and Σ V = 0 , and the torque a third equation: Σ τ = 0 .