When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Preorder - Wikipedia

    en.wikipedia.org/wiki/Preorder

    Both of these are special cases of a preorder: an antisymmetric preorder is a partial order, and a symmetric preorder is an equivalence relation. Moreover, a preorder on a set X {\displaystyle X} can equivalently be defined as an equivalence relation on X {\displaystyle X} , together with a partial order on the set of equivalence class.

  3. Partially ordered set - Wikipedia

    en.wikipedia.org/wiki/Partially_ordered_set

    Conversely, a strict partial order < on may be converted to a non-strict partial order by adjoining all relationships of that form; that is, := < is a non-strict partial order. Thus, if ≤ {\displaystyle \leq } is a non-strict partial order, then the corresponding strict partial order < is the irreflexive kernel given by a < b if a ≤ b and a ...

  4. Specialization (pre)order - Wikipedia

    en.wikipedia.org/wiki/Specialization_(pre)order

    In the branch of mathematics known as topology, the specialization (or canonical) preorder is a natural preorder on the set of the points of a topological space.For most spaces that are considered in practice, namely for all those that satisfy the T 0 separation axiom, this preorder is even a partial order (called the specialization order).

  5. Glossary of order theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_order_theory

    Base.See continuous poset.; Binary relation.A binary relation over two sets is a subset of their Cartesian product.; Boolean algebra.A Boolean algebra is a distributive lattice with least element 0 and greatest element 1, in which every element x has a complement ¬x, such that x ∧ ¬x = 0 and x ∨ ¬x = 1.

  6. Weak ordering - Wikipedia

    en.wikipedia.org/wiki/Weak_ordering

    A total order is a total preorder which is antisymmetric, in other words, which is also a partial order. Total preorders are sometimes also called preference relations . The complement of a strict weak order is a total preorder, and vice versa, but it seems more natural to relate strict weak orders and total preorders in a way that preserves ...

  7. Order theory - Wikipedia

    en.wikipedia.org/wiki/Order_theory

    Orders are special binary relations. Suppose that P is a set and that ≤ is a relation on P ('relation on a set' is taken to mean 'relation amongst its inhabitants', i.e. ≤ is a subset of the cartesian product P x P). Then ≤ is a partial order if it is reflexive, antisymmetric, and transitive, that is, if for all a, b and c in P, we have that:

  8. Finite topological space - Wikipedia

    en.wikipedia.org/wiki/Finite_topological_space

    In general, two points x and y are topologically indistinguishable if and only if x ≤ y and y ≤ x, where ≤ is the specialization preorder on X. It follows that a space X is T 0 if and only if the specialization preorder ≤ on X is a partial order. There are numerous partial orders on a finite set. Each defines a unique T 0 topology.

  9. Linear extension - Wikipedia

    en.wikipedia.org/wiki/Linear_extension

    A preorder is a reflexive and transitive relation. The difference between a preorder and a partial-order is that a preorder allows two different items to be considered "equivalent", that is, both and hold, while a partial-order allows this only when =.