Search results
Results From The WOW.Com Content Network
The names "lambda abstraction", "lambda function", and "lambda expression" refer to the notation of function abstraction in lambda calculus, where the usual function f (x) = M would be written (λx. M), and where M is an expression that uses x. Compare to the Python syntax of lambda x: M.
In fact computability can itself be defined via the lambda calculus: a function F: N → N of natural numbers is a computable function if and only if there exists a lambda expression f such that for every pair of x, y in N, F(x)=y if and only if f x = β y, where x and y are the Church numerals corresponding to x and y, respectively and = β ...
The term closure is often used as a synonym for anonymous function, though strictly, an anonymous function is a function literal without a name, while a closure is an instance of a function, a value, whose non-local variables have been bound either to values or to storage locations (depending on the language; see the lexical environment section below).
In Python, functions are first-class objects that can be created and passed around dynamically. Python's limited support for anonymous functions is the lambda construct. An example is the anonymous function which squares its input, called with the argument of 5:
This definition recognizes a lambda abstraction with an actual parameter as defining a function. Only lambda abstractions without an application are treated as anonymous functions. lambda-named A named function. An expression like (.) where M is lambda free and N is lambda free or an anonymous function.
A function's identity is based on its implementation. A lambda calculus function (or term) is an implementation of a mathematical function. In the lambda calculus there are a number of combinators (implementations) that satisfy the mathematical definition of a fixed-point combinator.
Dirichlet lambda function, λ(s) = (1 – 2 −s)ζ(s) where ζ is the Riemann zeta function; Liouville function, λ(n) = (–1) Ω(n) Von Mangoldt function, Λ(n) = log p if n is a positive power of the prime p; Modular lambda function, λ(τ), a highly symmetric holomorphic function on the complex upper half-plane
The Tukey lambda distribution has a simple, closed form for the CDF and / or PDF only for a few exceptional values of the shape parameter, for example: λ ∈ {2, 1, 1 / 2 , 0 } (see uniform distribution [ cases λ = 1 and λ = 2 ] and the logistic distribution [ case λ = 0 ].