When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Diagonalizable matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonalizable_matrix

    The fundamental fact about diagonalizable maps and matrices is expressed by the following: An matrix over a field is diagonalizable if and only if the sum of the dimensions of its eigenspaces is equal to , which is the case if and only if there exists a basis of consisting of eigenvectors of .

  3. Jacobi eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm

    In numerical linear algebra, the Jacobi eigenvalue algorithm is an iterative method for the calculation of the eigenvalues and eigenvectors of a real symmetric matrix (a process known as diagonalization).

  4. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Only diagonalizable matrices can be factorized in this way. When the matrix being factorized is a normal or real symmetric matrix, the decomposition is called "spectral decomposition", derived from the spectral theorem.

  5. Orthogonal diagonalization - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_diagonalization

    In linear algebra, an orthogonal diagonalization of a normal matrix (e.g. a symmetric matrix) is a diagonalization by means of an orthogonal change of coordinates. [1]The following is an orthogonal diagonalization algorithm that diagonalizes a quadratic form q(x) on n by means of an orthogonal change of coordinates X = PY.

  6. Diagonal matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonal_matrix

    In fact, a given n-by-n matrix A is similar to a diagonal matrix (meaning that there is a matrix X such that X −1 AX is diagonal) if and only if it has n linearly independent eigenvectors. Such matrices are said to be diagonalizable .

  7. Commuting matrices - Wikipedia

    en.wikipedia.org/wiki/Commuting_matrices

    Two diagonalizable matrices and commute (=) if they are simultaneously diagonalizable (that is, there exists an invertible matrix such that both and are diagonal). [ 4 ] : p. 64 The converse is also true; that is, if two diagonalizable matrices commute, they are simultaneously diagonalizable. [ 5 ]

  8. Modal matrix - Wikipedia

    en.wikipedia.org/wiki/Modal_matrix

    In linear algebra, the modal matrix is used in the diagonalization process involving eigenvalues and eigenvectors. [ 1 ] Specifically the modal matrix M {\displaystyle M} for the matrix A {\displaystyle A} is the n × n matrix formed with the eigenvectors of A {\displaystyle A} as columns in M {\displaystyle M} .

  9. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    An n × n matrix A is diagonalizable if and only if the sum of the dimensions of the eigenspaces is n. Or, equivalently, if and only if A has n linearly independent eigenvectors. Not all matrices are diagonalizable; matrices that are not diagonalizable are called defective matrices. Consider the following matrix: