Search results
Results From The WOW.Com Content Network
Data-driven models encompass a wide range of techniques and methodologies that aim to intelligently process and analyse large datasets. Examples include fuzzy logic, fuzzy and rough sets for handling uncertainty, [3] neural networks for approximating functions, [4] global optimization and evolutionary computing, [5] statistical learning theory, [6] and Bayesian methods. [7]
Data-informed decision-making (DIDM) gives reference to the collection and analysis of data to guide decisions that improve success. [1] Another form of this process is referred to as data-driven decision-making, "which is defined similarly as making decisions based on hard data as opposed to intuition, observation, or guesswork."
Overview of a data-modeling context: Data model is based on Data, Data relationship, Data semantic and Data constraint. A data model provides the details of information to be stored, and is of primary use when the final product is the generation of computer software code for an application or the preparation of a functional specification to aid a computer software make-or-buy decision.
Automated decision-making involves using data as input to be analyzed within a process, model, or algorithm or for learning and generating new models. [7] ADM systems may use and connect a wide range of data types and sources depending on the goals and contexts of the system, for example, sensor data for self-driving cars and robotics, identity data for security systems, demographic and ...
Data analysis is the process of inspecting, cleansing, transforming, and modeling data with the goal of discovering useful information, informing conclusions, and supporting decision-making. [1] Data analysis has multiple facets and approaches, encompassing diverse techniques under a variety of names, and is used in different business, science ...
In computer programming, data-driven programming is a programming paradigm in which the program statements describe the data to be matched and the processing required rather than defining a sequence of steps to be taken. [1] Standard examples of data-driven languages are the text-processing languages sed and AWK, [1] and the document ...
Additional problems associated with perceptions of data driven instruction include the limitations of quantitative data to represent student learning, not considering the social and emotional needs or the context of the data when making instructional decisions, and a hyperfocus on the core areas of literacy and mathematics while ignoring the ...
[1] [2] Data may represent abstract ideas or concrete measurements. [3] Data are commonly used in scientific research, economics, and virtually every other form of human organizational activity. Examples of data sets include price indices (such as the consumer price index), unemployment rates, literacy rates, and census data. In this context ...