Search results
Results From The WOW.Com Content Network
Diagram of thermodynamic surface from Maxwell's book Theory of Heat.The diagram is drawn roughly from the same angle as the upper left photo above, and shows the 3D axes e (energy, increasing downwards), ϕ (entropy, increasing to the lower right and out-of-plane), and v (volume, increasing to the upper right and into-plane).
The discontinuity in , and other properties, e.g. internal energy, , and entropy,, of the substance, is called a first order phase transition. [12] [13] In order to specify the unique experimentally observed pressure, (), at which it occurs another thermodynamic condition is required, for from Fig.1 it could clearly occur for any pressure in the range .
A century later Gibbs [3] proposed a modification to Young's equation to account for the volumetric dependence of the contact angle. Gibbs postulated the existence of a line tension, which acts at the three-phase boundary and accounts for the excess energy at the confluence of the solid-liquid-gas phase interface, and is given as:
Gibbs also worked on the application of Maxwell's equations to problems in physical optics. As a mathematician, he created modern vector calculus (independently of the British scientist Oliver Heaviside , who carried out similar work during the same period) and described the Gibbs phenomenon in the theory of Fourier analysis.
The structure of Maxwell relations is a statement of equality among the second derivatives for continuous functions. It follows directly from the fact that the order of differentiation of an analytic function of two variables is irrelevant (Schwarz theorem).
Wulff construction. The surface free energy is shown in red, with in black normals to lines from the origin to .The inner envelope is the Wulff shape, shown in blue. The Wulff construction is a method to determine the equilibrium shape of a droplet or crystal of fixed volume inside a separate phase (usually its saturated solution or vapor).
The UNIQUAC model can be considered a second generation activity coefficient because its expression for the excess Gibbs energy consists of an entropy term in addition to an enthalpy term. Earlier activity coefficient models such as the Wilson equation and the non-random two-liquid model (NRTL model) only consist of enthalpy terms.
By normalizing the above equation by the extent of a system, such as the total number of moles, the Gibbs–Duhem equation provides a relationship between the intensive variables of the system. For a simple system with I {\displaystyle I} different components, there will be I + 1 {\displaystyle I+1} independent parameters or "degrees of freedom".