When.com Web Search

  1. Ads

    related to: lambda calculus calculator with steps and examples

Search results

  1. Results From The WOW.Com Content Network
  2. Lambda calculus - Wikipedia

    en.wikipedia.org/wiki/Lambda_calculus

    Lambda calculus is Turing complete, that is, it is a universal model of computation that can be used to simulate any Turing machine. [3] Its namesake, the Greek letter lambda (λ), is used in lambda expressions and lambda terms to denote binding a variable in a function.

  3. Church encoding - Wikipedia

    en.wikipedia.org/wiki/Church_encoding

    In mathematics, Church encoding is a means of representing data and operators in the lambda calculus. The Church numerals are a representation of the natural numbers using lambda notation. The method is named for Alonzo Church, who first encoded data in the lambda calculus this way.

  4. de Bruijn index - Wikipedia

    en.wikipedia.org/wiki/De_Bruijn_index

    In mathematical logic, the de Bruijn index is a tool invented by the Dutch mathematician Nicolaas Govert de Bruijn for representing terms of lambda calculus without naming the bound variables. [1] Terms written using these indices are invariant with respect to α-conversion, so the check for α-equivalence is the same as that for syntactic ...

  5. Simply typed lambda calculus - Wikipedia

    en.wikipedia.org/wiki/Simply_typed_lambda_calculus

    In the 1930s Alonzo Church sought to use the logistic method: [a] his lambda calculus, as a formal language based on symbolic expressions, consisted of a denumerably infinite series of axioms and variables, [b] but also a finite set of primitive symbols, [c] denoting abstraction and scope, as well as four constants: negation, disjunction, universal quantification, and selection respectively ...

  6. Fixed-point combinator - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_combinator

    The Y combinator is an implementation of a fixed-point combinator in lambda calculus. Fixed-point combinators may also be easily defined in other functional and imperative languages. The implementation in lambda calculus is more difficult due to limitations in lambda calculus. The fixed-point combinator may be used in a number of different areas:

  7. Church–Turing thesis - Wikipedia

    en.wikipedia.org/wiki/Church–Turing_thesis

    In 1936, Alonzo Church created a method for defining functions called the λ-calculus. Within λ-calculus, he defined an encoding of the natural numbers called the Church numerals. A function on the natural numbers is called λ-computable if the corresponding function on the Church numerals can be represented by a term of the λ-calculus.

  8. Lambda calculus definition - Wikipedia

    en.wikipedia.org/wiki/Lambda_calculus_definition

    The purpose of β-reduction is to calculate a value. A value in lambda calculus is a function. So β-reduction continues until the expression looks like a function abstraction. A lambda expression that cannot be reduced further, by either β-redex, or η-redex is in normal form. Note that alpha-conversion may convert functions.

  9. Beta normal form - Wikipedia

    en.wikipedia.org/wiki/Beta_normal_form

    In the lambda calculus, a beta redex is a term of the form: [3] [4] (.). A redex is in head position in a term , if has the following shape (note that application has higher priority than abstraction, and that the formula below is meant to be a lambda-abstraction, not an application):