Search results
Results From The WOW.Com Content Network
One may compare linear motion to general motion. In general motion, a particle's position and velocity are described by vectors, which have a magnitude and direction. In linear motion, the directions of all the vectors describing the system are equal and constant which means the objects move along the same axis and do not change direction.
In the simple case of a single particle moving with a constant velocity (thereby undergoing uniform linear motion), the action is the momentum of the particle times the distance it moves, added up along its path; equivalently, action is the difference between the particle's kinetic energy and its potential energy, times the duration for which ...
All frames of reference with zero acceleration are in a state of constant rectilinear motion (straight-line motion) with respect to one another. In such a frame, an object with zero net force acting on it, is perceived to move with a constant velocity, or, equivalently, Newton's first law of motion holds. Such frames are known as inertial.
Take three cardboard A, B and C, of the same size. Make a pin hole at the centre of each of three cardboard. Place the cardboard in the upright position, such that the holes in A, B and C are in the same straight line, in the order. Place a luminous source like a candle near the cardboard A and look through the hole in the cardboard C.
where t = t(n) is called the surface traction, integrated over the surface of the body, in turn n denotes a unit vector normal and directed outwards to the surface S. Let the coordinate system ( x 1 , x 2 , x 3 ) be an inertial frame of reference , r be the position vector of a point particle in the continuous body with respect to the origin of ...
Position space (also real space or coordinate space) is the set of all position vectors r in Euclidean space, and has dimensions of length; a position vector defines a point in space. (If the position vector of a point particle varies with time, it will trace out a path, the trajectory of a particle.)
Once the particle is moving in the drift direction, the magnetic field deflects it back against the external force, so that the average acceleration in the direction of the force is zero. There is, however, a one-time displacement in the direction of the force equal to ( f / m ) ω c −2 , which should be considered a consequence of the ...
Timelines are the lines formed by a set of fluid particles that were marked at a previous instant in time, creating a line or a curve that is displaced in time as the particles move. By definition, different streamlines at the same instant in a flow do not intersect, because a fluid particle cannot have two different velocities at the same point.