Search results
Results From The WOW.Com Content Network
The Collatz conjecture states that all paths eventually lead to 1. The Collatz conjecture [a] is one of the most famous unsolved problems in mathematics. The conjecture asks whether repeating two simple arithmetic operations will eventually transform every positive integer into 1.
Complete induction is equivalent to ordinary mathematical induction as described above, in the sense that a proof by one method can be transformed into a proof by the other. Suppose there is a proof of () by complete induction. Then, this proof can be transformed into an ordinary induction proof by assuming a stronger inductive hypothesis.
Lothar Collatz (German:; July 6, 1910 – September 26, 1990) was a German mathematician, born in Arnsberg, Westphalia. The "3x + 1" problem is also known as the Collatz conjecture, named after him and still unsolved. The Collatz–Wielandt formula for the Perron–Frobenius eigenvalue of a positive square matrix was also named after him.
In proof by mathematical induction, a single "base case" is proved, and an "induction rule" is proved that establishes that any arbitrary case implies the next case. Since in principle the induction rule can be applied repeatedly (starting from the proved base case), it follows that all (usually infinitely many) cases are provable. [ 15 ]
Conjecture Field Comments Eponym(s) Cites 1/3–2/3 conjecture: order theory: n/a: 70 abc conjecture: number theory: ⇔Granville–Langevin conjecture, Vojta's conjecture in dimension 1 ⇒ErdÅ‘s–Woods conjecture, Fermat–Catalan conjecture Formulated by David Masser and Joseph Oesterlé. [1] Proof claimed in 2012 by Shinichi Mochizuki: n/a ...
Proof by exhaustion, also known as proof by cases, proof by case analysis, complete induction or the brute force method, is a method of mathematical proof in which the statement to be proved is split into a finite number of cases or sets of equivalent cases, and where each type of case is checked to see if the proposition in question holds. [1]
Under the section "Other formulations of the conjecture", include some formulations of the Collatz conjecture as termination problems for rewriting systems. These formulations enable automated approaches to the Collatz conjecture by using methods that are developed for automatically proving termination of rewriting.
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.