Search results
Results From The WOW.Com Content Network
In Riemannian geometry, a branch of mathematics, the prescribed scalar curvature problem is as follows: given a closed, smooth manifold M and a smooth, real-valued function ƒ on M, construct a Riemannian metric on M whose scalar curvature equals ƒ. Due primarily to the work of J. Kazdan and F. Warner in the 1970s, this problem is well understood.
A function ƒ has a vertical tangent at x = a if the difference quotient used to define the derivative has infinite limit: (+) = + (+) =.The graph of ƒ has a vertical tangent at x = a if the derivative of ƒ at a is either positive or negative infinity.
In particular, if Y is a Banach space, then C(X, Y) is itself a Banach space under the uniform norm. The uniform limit theorem also holds if continuity is replaced by uniform continuity. That is, if X and Y are metric spaces and ƒ n : X → Y is a sequence of uniformly continuous functions converging uniformly to a function ƒ, then ƒ must be ...
Using the Chinese remainder theorem, it suffices to evaluate modulo different primes , …, with a product at least . Each prime can be taken to be roughly log M = O ( d m log q ) {\displaystyle \log M=O(dm\log q)} , and the number of primes needed, ℓ {\displaystyle \ell } , is roughly the same.
In particular, for any pair of frames ƒ and ƒ′, there is a unique transition of frame (ƒ→ƒ′) in G determined by the requirement (ƒ→ƒ′)ƒ = ƒ′. Given a frame ƒ and a point A ∈ X, there is associated a point x = (A,ƒ) belonging to Σ. This mapping determined by the frame ƒ is a bijection from the points of X to those of Σ.
where n! denotes the factorial of n and ƒ (n) (a) denotes the nth derivative of ƒ evaluated at the point a. The derivative of order zero ƒ is defined to be ƒ itself and (x − a) 0 and 0! are both defined to be 1. In the case that a = 0, the series is also called a Maclaurin series.
The extreme value theorem was originally proven by Bernard Bolzano in the 1830s in a work Function Theory but the work remained unpublished until 1930. Bolzano's proof consisted of showing that a continuous function on a closed interval was bounded, and then showing that the function attained a maximum and a minimum value.
A height function is a function that quantifies the complexity of mathematical objects. In Diophantine geometry, height functions quantify the size of solutions to Diophantine equations and are typically functions from a set of points on algebraic varieties (or a set of algebraic varieties) to the real numbers.