Search results
Results From The WOW.Com Content Network
The plane of a face-centered cubic lattice is a hexagonal grid. Attempting to create a base-centered cubic lattice (i.e., putting an extra lattice point in the center of each horizontal face) results in a simple tetragonal Bravais lattice. Coordination number (CN) is the number of nearest neighbors of a central atom in the structure. [1]
The primitive unit cell for the body-centered cubic crystal structure contains several fractions taken from nine atoms (if the particles in the crystal are atoms): one on each corner of the cube and one atom in the center. Because the volume of each of the eight corner atoms is shared between eight adjacent cells, each BCC cell contains the ...
For face-centered cubic (fcc) and body-centered cubic (bcc) lattices, the primitive lattice vectors are not orthogonal. However, in these cases the Miller indices are conventionally defined relative to the lattice vectors of the cubic supercell and hence are again simply the Cartesian directions.
I body centered (from the German Innenzentriert) F face centered (from the German Flächenzentriert) A centered on A faces only; B centered on B faces only; C centered on C faces only; R rhombohedral; A reflection plane m within the point groups can be replaced by a glide plane, labeled as a, b, or c depending on which axis the glide is along.
2.3.2 Face-centered cubic (FCC) ... transform is a body-centered cubic ... one atom at each lattice point as a primitive or simple cubic with a basis of ...
There are two simple regular lattices that achieve this highest average density. They are called face-centered cubic (FCC) (also called cubic close packed) and hexagonal close-packed (HCP), based on their symmetry. Both are based upon sheets of spheres arranged at the vertices of a triangular tiling; they differ in how the sheets are stacked ...
The reciprocal lattice to an FCC lattice is the body-centered cubic (BCC) lattice, with a cube side of . Consider an FCC compound unit cell. Locate a primitive unit cell of the FCC; i.e., a unit cell with one lattice point. Now take one of the vertices of the primitive unit cell as the origin.
Octahedral (red) and tetrahedral (blue) interstitial symmetry polyhedra in a face-centered cubic lattice. The actual interstitial atom would ideally be in the middle of one of the polyhedra. A close packed unit cell, both face-centered cubic and hexagonal close packed, can form two different shaped holes.