Ad
related to: face centered cubic crystal lattice
Search results
Results From The WOW.Com Content Network
The face-centered cubic lattice (cF) has lattice points on the faces of the cube, that each gives exactly one half contribution, in addition to the corner lattice points, giving a total of four lattice points per unit cell (1 ⁄ 8 × 8 from the corners plus 1 ⁄ 2 × 6 from the faces).
For face-centered cubic (fcc) and body-centered cubic (bcc) lattices, the primitive lattice vectors are not orthogonal. However, in these cases the Miller indices are conventionally defined relative to the lattice vectors of the cubic supercell and hence are again simply the Cartesian directions.
There are two simple regular lattices that achieve this highest average density. They are called face-centered cubic (FCC) (also called cubic close packed) and hexagonal close-packed (HCP), based on their symmetry. Both are based upon sheets of spheres arranged at the vertices of a triangular tiling; they differ in how the sheets are stacked ...
Translations within the lattice in the form of screw axes and glide planes are also noted, giving a complete crystallographic space group. These are the Bravais lattices in three dimensions: P primitive; I body centered (from the German Innenzentriert) F face centered (from the German Flächenzentriert) A centered on A faces only; B centered on ...
The diamond crystal structure belongs to the face-centered cubic lattice, with a repeated two-atom pattern. In crystallography, a crystal system is a set of point groups (a group of geometric symmetries with at least one fixed point). A lattice system is a set of Bravais lattices (an infinite infinite array of discrete points).
Lattice configuration of the close packed slip plane in an fcc material. The arrow represents the Burgers vector in this dislocation glide system. Slip in face centered cubic (fcc) crystals occurs along the close packed plane. Specifically, the slip plane is of type , and the direction is of type < 1 10>.
The Body centered cubic structure (BCC). It is not a close packed structure. In this each metal atom is at the centre of a cube with 8 nearest neighbors, however the 6 atoms at the centres of the adjacent cubes are only approximately 15% further away so the coordination number can therefore be considered to be 14 when these are on one 4 fold ...
Beyond the until cell, the extended crystal structure of fluorite continues packing in a face-centered cubic (fcc) packing structure (also known as cubic close-packed or ccp). [5] This pattern of spherical packing follows an ABC pattern, where each successive layer of spheres settles on top of the adjacent hole of the lattice.