Search results
Results From The WOW.Com Content Network
State-transition tables are sometimes one-dimensional tables, also called characteristic tables. They are much more like truth tables than their two-dimensional form. The single dimension indicates inputs, current states, next states and (optionally) outputs associated with the state transitions.
A state diagram for a simple example is shown in the figure on the right, using a directed graph to picture the state transitions. The states represent whether a hypothetical stock market is exhibiting a bull market, bear market, or stagnant market trend during a given week. According to the figure, a bull week is followed by another bull week ...
The state-transition matrix is used to find the solution to a general state-space representation of a linear system in the following form ˙ = () + (), =, where () are the states of the system, () is the input signal, () and () are matrix functions, and is the initial condition at .
The changes of state of the system are called transitions. The probabilities associated with various state changes are called transition probabilities. The process is characterized by a state space, a transition matrix describing the probabilities of particular transitions, and an initial state (or initial distribution) across the state space ...
the only information passed from the previous step to the next is the explicitly specified automaton state. A finite automaton can be defined by a state-transition table whose rows stand for the current states, columns stand for the inputs, and cells stand for the next states and actions to perform.
Figure 7: State roles in a state transition. In UML, a state transition can directly connect any two states. These two states, which may be composite, are designated as the main source and the main target of a transition. Figure 7 shows a simple transition example and explains the state roles in that transition.
To the right: the above table as expressed as a "state transition" diagram. Usually large tables are better left as tables (Booth, p. 74). They are more readily simulated by computer in tabular form (Booth, p. 74).
A computer simulation (or "sim") is an attempt to model a real-life or hypothetical situation on a computer so that it can be studied to see how the system works. By changing variables in the simulation, predictions may be made about the behaviour of the system. It is a tool to virtually investigate the behaviour of the system under study. [3]