Search results
Results From The WOW.Com Content Network
Pyruvate kinase is the enzyme ... have a large negative free energy and are responsible for the regulation of this pathway. [17] Pyruvate kinase activity is most ...
Pyruvate dehydrogenase complex. Pyruvate dehydrogenase complex (PDC) is a complex of three enzymes that converts pyruvate into acetyl-CoA by a process called pyruvate decarboxylation. [1] Acetyl-CoA may then be used in the citric acid cycle to carry out cellular respiration, and this complex links the glycolysis metabolic pathway to the citric ...
[5] [6] It codes for an isozyme of pyruvate dehydrogenase kinase (PDK). Pyruvate dehydrogenase (PDH) is a part of a mitochondrial multienzyme complex that catalyzes the oxidative decarboxylation of pyruvate and is one of the major enzymes responsible for the regulation of homeostasis of carbohydrate fuels in mammals.
The final step of glycolysis is catalysed by pyruvate kinase to form pyruvate and another ATP. It is regulated by a range of different transcriptional, covalent and non-covalent regulation mechanisms, which can vary widely in different tissues. [41] [42] [43] For
Pyruvate kinase isozymes M1/M2 (PKM1/M2), also known as pyruvate kinase muscle isozyme (PKM), pyruvate kinase type K, cytosolic thyroid hormone-binding protein (CTHBP), thyroid hormone-binding protein 1 (THBP1), or opa-interacting protein 3 (OIP3), is an enzyme that in humans is encoded by the PKM2 gene.
Pyruvate dehydrogenase kinase (also pyruvate dehydrogenase complex kinase, PDC kinase, or PDK; EC 2.7.11.2) is a kinase enzyme which acts to inactivate the enzyme pyruvate dehydrogenase by phosphorylating it using ATP. PDK thus participates in the regulation of the pyruvate dehydrogenase complex of
Pyruvate dehydrogenase lipoamide kinase isozyme 4, mitochondrial (PDK4) is an enzyme that in humans is encoded by the PDK4 gene. [5] [6] It codes for an isozyme of pyruvate dehydrogenase kinase. This gene is a member of the PDK/BCKDK protein kinase family and encodes a mitochondrial protein with a histidine kinase domain.
When pyruvate kinase – the enzyme that normally catalyzes the reaction that converts PEP to pyruvate – is knocked out in mutants of Bacillus subtilis, PEPCK participates in one of the replacement anaplerotic reactions, working in the reverse direction of its normal function, converting PEP to OAA. [13]