Ad
related to: how to find reciprocal of mixed fraction
Search results
Results From The WOW.Com Content Network
The reciprocal function: y = 1/x. For every x except 0, y represents its multiplicative inverse. The graph forms a rectangular hyperbola. In mathematics, a multiplicative inverse or reciprocal for a number x, denoted by 1/x or x −1, is a number which when multiplied by x yields the multiplicative identity, 1. The multiplicative inverse of a ...
A mixed number (also called a mixed fraction or mixed numeral) is the sum of a non-zero integer and a proper fraction, conventionally written by juxtaposition (or concatenation) of the two parts, without the use of an intermediate plus (+) or minus (−) sign. When the fraction is written horizontally, a space is added between the integer and ...
Slices of approximately 1/8 of a pizza. A unit fraction is a positive fraction with one as its numerator, 1/ n.It is the multiplicative inverse (reciprocal) of the denominator of the fraction, which must be a positive natural number.
The harmonic mean of a set of positive integers is the number of numbers times the reciprocal of the sum of their reciprocals. The optic equation requires the sum of the reciprocals of two positive integers a and b to equal the reciprocal of a third positive integer c. All solutions are given by a = mn + m 2, b = mn + n 2, c = mn.
A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...
Multiplicative inverse, in mathematics, the number 1/x, which multiplied by x gives the product 1, also known as a reciprocal; Reciprocal polynomial, a polynomial obtained from another polynomial by reversing its coefficients; Reciprocal rule, a technique in calculus for calculating derivatives of reciprocal functions; Reciprocal spiral, a ...
Relation to continued fractions [ edit ] Every real number can be essentially uniquely represented as a simple continued fraction , namely as the sum of its integer part and the reciprocal of its fractional part which is written as the sum of its integer part and the reciprocal of its fractional part, and so on.
If the original random variable X is uniformly distributed on the interval (a,b), where a>0, then the reciprocal variable Y = 1 / X has the reciprocal distribution which takes values in the range (b −1,a −1), and the probability density function in this range is =, and is zero elsewhere.