When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fermat's theorem on sums of two squares - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem_on_sums_of...

    If a number which is a sum of two squares is divisible by a prime which is a sum of two squares, then the quotient is a sum of two squares. (This is Euler's first Proposition). Indeed, suppose for example that a 2 + b 2 {\displaystyle a^{2}+b^{2}} is divisible by p 2 + q 2 {\displaystyle p^{2}+q^{2}} and that this latter is a prime.

  3. Sum of squares - Wikipedia

    en.wikipedia.org/wiki/Sum_of_squares

    The sum of two squares theorem generalizes Fermat's theorem to specify which composite numbers are the sums of two squares. Pythagorean triples are sets of three integers such that the sum of the squares of the first two equals the square of the third. A Pythagorean prime is a prime that is the sum of two squares; Fermat's theorem on sums of ...

  4. Sum of two squares theorem - Wikipedia

    en.wikipedia.org/wiki/Sum_of_two_squares_theorem

    Therefore, the theorem states that it is expressible as the sum of two squares. Indeed, 2450 = 7 2 + 49 2. The prime decomposition of the number 3430 is 2 · 5 · 7 3. This time, the exponent of 7 in the decomposition is 3, an odd number. So 3430 cannot be written as the sum of two squares.

  5. Pythagorean prime - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_prime

    The sum of one odd square and one even square is congruent to 1 mod 4, but there exist composite numbers such as 21 that are 1 mod 4 and yet cannot be represented as sums of two squares. Fermat's theorem on sums of two squares states that the prime numbers that can be represented as sums of two squares are exactly 2 and the odd primes congruent ...

  6. Euler's factorization method - Wikipedia

    en.wikipedia.org/wiki/Euler's_factorization_method

    The Brahmagupta–Fibonacci identity states that the product of two sums of two squares is a sum of two squares. Euler's method relies on this theorem but it can be viewed as the converse, given n = a 2 + b 2 = c 2 + d 2 {\displaystyle n=a^{2}+b^{2}=c^{2}+d^{2}} we find n {\displaystyle n} as a product of sums of two squares.

  7. Sum of squares function - Wikipedia

    en.wikipedia.org/wiki/Sum_of_squares_function

    The number of ways to write a natural number as sum of two squares is given by r 2 (n). It is given explicitly by = (() ()) where d 1 (n) is the number of divisors of n which are congruent to 1 modulo 4 and d 3 (n) is the number of divisors of n which are congruent to 3 modulo 4. Using sums, the expression can be written as:

  8. Descartes' theorem - Wikipedia

    en.wikipedia.org/wiki/Descartes'_theorem

    Factorizations of sums of two squares can be obtained using the sum of two squares theorem. Any other integer Apollonian gasket can be formed by multiplying a primitive root quadruple by an arbitrary integer, and any quadruple in one of these gaskets (that is, any integer solution to the Descartes equation) can be formed by reversing the ...

  9. List of formulae involving π - Wikipedia

    en.wikipedia.org/wiki/List_of_formulae_involving_π

    The last two formulas are special cases of ... each denominator is the multiple of four nearest to the numerator. ... is the sum of two squares function.