When.com Web Search

  1. Ad

    related to: tangent secant power theorem example

Search results

  1. Results From The WOW.Com Content Network
  2. Tangent–secant theorem - Wikipedia

    en.wikipedia.org/wiki/Tangentsecant_theorem

    The tangent-secant theorem can be proven using similar triangles (see graphic). Like the intersecting chords theorem and the intersecting secants theorem, the tangent-secant theorem represents one of the three basic cases of a more general theorem about two intersecting lines and a circle, namely, the power of point theorem.

  3. Power of a point - Wikipedia

    en.wikipedia.org/wiki/Power_of_a_point

    Secant-, chord-theorem. For the intersecting secants theorem and chord theorem the power of a point plays the role of an invariant: . Intersecting secants theorem: For a point outside a circle and the intersection points , of a secant line with the following statement is true: | | | | = (), hence the product is independent of line .

  4. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    By the power-of-a-point theorem, the product of lengths PM · PN for any ray PMN equals to the square of PT, the length of the tangent line segment (red). No tangent line can be drawn through a point within a circle, since any such line must be a secant line. However, two tangent lines can be drawn to a circle from a point P outside

  5. Intersecting chords theorem - Wikipedia

    en.wikipedia.org/wiki/Intersecting_chords_theorem

    In Euclidean geometry, the intersecting chords theorem, or just the chord theorem, is a statement that describes a relation of the four line segments created by two intersecting chords within a circle. It states that the products of the lengths of the line segments on each chord are equal. It is Proposition 35 of Book 3 of Euclid's Elements.

  6. Chord (geometry) - Wikipedia

    en.wikipedia.org/wiki/Chord_(geometry)

    If a chord were to be extended infinitely on both directions into a line, the object is a secant line. The perpendicular line passing through the chord's midpoint is called sagitta (Latin for "arrow"). More generally, a chord is a line segment joining two points on any curve, for instance, on an ellipse.

  7. Tangent - Wikipedia

    en.wikipedia.org/wiki/Tangent

    A tangent, a chord, and a secant to a circle. The intuitive notion that a tangent line "touches" a curve can be made more explicit by considering the sequence of straight lines (secant lines) passing through two points, A and B, those that lie on the function curve. The tangent at A is the limit when point B approximates or tends to A. The ...

  8. Special cases of Apollonius' problem - Wikipedia

    en.wikipedia.org/wiki/Special_cases_of_Apollonius...

    Circles tangent to two given points must lie on the perpendicular bisector. Circles tangent to two given lines must lie on the angle bisector. Tangent line to a circle from a given point draw semicircle centered on the midpoint between the center of the circle and the given point. Power of a point and the harmonic mean [clarification needed]

  9. Trigonometry - Wikipedia

    en.wikipedia.org/wiki/Trigonometry

    The cosine, cotangent, and cosecant are so named because they are respectively the sine, tangent, and secant of the complementary angle abbreviated to "co-". [ 32 ] With these functions, one can answer virtually all questions about arbitrary triangles by using the law of sines and the law of cosines . [ 33 ]