Search results
Results From The WOW.Com Content Network
The basic rule for divisibility by 4 is that if the number formed by the last two digits in a number is divisible by 4, the original number is divisible by 4; [2] [3] this is because 100 is divisible by 4 and so adding hundreds, thousands, etc. is simply adding another number that is divisible by 4. If any number ends in a two digit number that ...
In mathematics, a square-free integer (or squarefree integer) is an integer which is divisible by no square number other than 1. That is, its prime factorization has exactly one factor for each prime that appears in it. For example, 10 = 2 ⋅ 5 is square-free, but 18 = 2 ⋅ 3 ⋅ 3 is not, because 18 is divisible by 9 = 3 2. The smallest ...
A Harshad number in base 10 is an integer that is divisible by the sum of its digits (when written in base 10). A005349: Factorions: 1, 2, 145, 40585, ... A natural number that equals the sum of the factorials of its decimal digits. A014080: Circular primes: 2, 3, 5, 7, 11, 13, 17, 37, 79, 113, ...
1 and −1 divide (are divisors of) every integer. Every integer (and its negation) is a divisor of itself. Integers divisible by 2 are called even, and integers not divisible by 2 are called odd. 1, −1, and are known as the trivial divisors of .
d() is the number of positive divisors of n, including 1 and n itself; σ() is the sum of the positive divisors of n, including 1 and n itselfs() is the sum of the proper divisors of n, including 1 but not n itself; that is, s(n) = σ(n) − n
Formally, a regular number is an integer of the form , for nonnegative integers , , and .Such a number is a divisor of (⌈ / ⌉,,).The regular numbers are also called 5-smooth, indicating that their greatest prime factor is at most 5. [2]
The number 18 is a harshad number in base 10, because the sum of the digits 1 and 8 is 9, and 18 is divisible by 9.; The Hardy–Ramanujan number (1729) is a harshad number in base 10, since it is divisible by 19, the sum of its digits (1729 = 19 × 91).
First, the digits of the number being tested are grouped in blocks of three. The odd numbered groups are summed. The sum of the even numbered groups is then subtracted from the sum of the odd numbered groups. The test number is divisible by 7, 11 or 13 iff the result of the summation is divisible by 7, 11 or 13 respectively. [2] [3] Example: