Search results
Results From The WOW.Com Content Network
For example, the heat required to raise the temperature of 1 kg of water by 1 K is 4184 joules, so the specific heat capacity of water is 4184 J⋅kg −1 ⋅K −1. [3] Specific heat capacity often varies with temperature, and is different for each state of matter. Liquid water has one of the highest specific heat capacities among common ...
The contribution of the muscle to the specific heat of the body is approximately 47%, and the contribution of the fat and skin is approximately 24%. The specific heat of tissues range from ~0.7 kJ · kg−1 · °C−1 for tooth (enamel) to 4.2 kJ · kg−1 · °C−1 for eye (sclera). [13]
In those contexts, the unit of heat capacity is 1 BTU/°R ≈ 1900 J/K. [5] The BTU was in fact defined so that the average heat capacity of one pound of water would be 1 BTU/°F. In this regard, with respect to mass, note conversion of 1 Btu/lb⋅°R ≈ 4,187 J/kg⋅K [ 6 ] and the calorie (below).
The centigrade heat unit (CHU) is the amount of heat required to raise the temperature of one pound (0.45 kg) of water by one Celsius degree. It is equal to 1.8 Btu or 1,899 joules. [26] In 1974, this unit was "still sometimes used" in the United Kingdom as an alternative to Btu. [27]
Water has a very high specific heat capacity of 4184 J/(kg·K) at 20 °C (4182 J/(kg·K) at 25 °C) —the second-highest among all the heteroatomic species (after ammonia), as well as a high heat of vaporization (40.65 kJ/mol or 2268 kJ/kg at the normal boiling point), both of which are a result of the extensive hydrogen bonding between its ...
Velocity of sound in water; c in distilled water at 25 °C 1498 m/s c at other temperatures [8] 1403 m/s at 0 °C 1427 m/s at 5 °C 1447 m/s at 10 °C 1481 m/s at 20 °C 1507 m/s at 30 °C 1526 m/s at 40 °C 1541 m/s at 50 °C 1552 m/s at 60 °C 1555 m/s at 70 °C 1555 m/s at 80 °C 1550 m/s at 90 °C 1543 m/s at 100 °C
That same year, James Prescott Joule suggested to Thomson that the true formula for Carnot's function was [20] = +, where is "the mechanical equivalent of a unit of heat", [21] now referred to as the specific heat capacity of water, approximately 771.8 foot-pounds force per degree Fahrenheit per pound (4,153 J/K/kg). [22]
If heat capacity is measured for a well-defined amount of substance, the specific heat is the measure of the heat required to increase the temperature of such a unit quantity by one unit of temperature. For example, raising the temperature of water by one kelvin (equal to one degree Celsius) requires 4186 joules per kilogram (J/kg).