Search results
Results From The WOW.Com Content Network
Bitonic mergesort is a parallel algorithm for sorting. It is also used as a construction method for building a sorting network.The algorithm was devised by Ken Batcher.The resulting sorting networks consist of ( ()) comparators and have a delay of ( ()), where is the number of items to be sorted. [1]
A simple sorting network consisting of four wires and five connectors. In computer science, comparator networks are abstract devices built up of a fixed number of "wires", carrying values, and comparator modules that connect pairs of wires, swapping the values on the wires if they are not in a desired order.
In a lab at DEC they knew how many bits their repeaters would lose and knowing this were able to create an 11 segment, 10 repeater, 3 active segment (11-10-3) network that maintained a round trip delay of less than 51.2 μs and a sufficient number of preamble bits that all end nodes functioned properly.
Timsort was designed to take advantage of runs of consecutive ordered elements that already exist in most real-world data, natural runs. It iterates over the data collecting elements into runs and simultaneously putting those runs in a stack. Whenever the runs on the top of the stack match a merge criterion, they are merged. This goes on until ...
The circuit consists of an up-down counter with the comparator controlling the direction of the count. The analog output of the DAC is compared with the analog input. If the input is greater than the DAC output signal, the output of the comparator goes high and the counter is caused to count up. The tracking ADC has the advantage of being simple.
The figure below demonstrates a simple example of the software's ability to create and modify variations across large amounts of networks. Graph representations of several spanning tree networks in Karger's algorithm. NetworkX has many network and graph analysis algorithms, aiding in a wide array of data analysis purposes.
Twisted is an event-driven network programming framework written in Python and licensed under the MIT License.. Twisted projects variously support TCP, UDP, SSL/TLS, IP multicast, Unix domain sockets, many protocols (including HTTP, XMPP, NNTP, IMAP, SSH, IRC, FTP, and others), and much more.
Many real networks have two fundamental properties, scale-free property and small-world property. If the degree distribution of the network follows a power-law, the network is scale-free; if any two arbitrary nodes in a network can be connected in a very small number of steps, the network is said to be small-world.