When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Symmetric matrix - Wikipedia

    en.wikipedia.org/wiki/Symmetric_matrix

    A complex symmetric matrix can be 'diagonalized' using a unitary matrix: thus if is a complex symmetric matrix, there is a unitary matrix such that is a real diagonal matrix with non-negative entries.

  3. Minimum rank of a graph - Wikipedia

    en.wikipedia.org/wiki/Minimum_rank_of_a_graph

    The minimum rank of a graph is always at most equal to n − 1, where n is the number of vertices in the graph. [1] For every induced subgraph H of a given graph G, the minimum rank of H is at most equal to the minimum rank of G. [2] If a graph is disconnected, then its minimum rank is the sum of the minimum ranks of its connected components. [3]

  4. Rank (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Rank_(linear_algebra)

    A matrix that has rank min(m, n) is said to have full rank; otherwise, the matrix is rank deficient. Only a zero matrix has rank zero. f is injective (or "one-to-one") if and only if A has rank n (in this case, we say that A has full column rank). f is surjective (or "onto") if and only if A has rank m (in this case, we say that A has full row ...

  5. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    If instead, A is equal to the negative of its transpose, that is, A = −A T, then A is a skew-symmetric matrix. In complex matrices, symmetry is often replaced by the concept of Hermitian matrices, which satisfies A ∗ = A, where the star or asterisk denotes the conjugate transpose of the matrix, that is, the transpose of the complex ...

  6. Rank factorization - Wikipedia

    en.wikipedia.org/wiki/Rank_factorization

    Every finite-dimensional matrix has a rank decomposition: Let be an matrix whose column rank is . Therefore, there are r {\textstyle r} linearly independent columns in A {\textstyle A} ; equivalently, the dimension of the column space of A {\textstyle A} is r {\textstyle r} .

  7. Charts on SO (3) - Wikipedia

    en.wikipedia.org/wiki/Charts_on_SO(3)

    If we use a skew-symmetric matrix, every 3 × 3 skew-symmetric matrix is determined by 3 parameters, and so at first glance, the parameter space is R 3. Exponentiating such a matrix results in an orthogonal 3 × 3 matrix of determinant 1 – in other words, a rotation matrix, but this is a many-to-one map.

  8. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    Gramian matrix: The symmetric matrix of the pairwise inner products of a set of vectors in an inner product space: Hessian matrix: The square matrix of second partial derivatives of a function of several variables: Householder matrix: The matrix of a reflection with respect to a hyperplane passing through the origin: Jacobian matrix

  9. Symmetric tensor - Wikipedia

    en.wikipedia.org/wiki/Symmetric_tensor

    are also possible. The minimum number r for which such a decomposition is possible is the symmetric rank of T. [3] This minimal decomposition is called a Waring decomposition; it is a symmetric form of the tensor rank decomposition. For second-order tensors this corresponds to the rank of the matrix representing the tensor in any basis, and it ...