Search results
Results From The WOW.Com Content Network
In this context, a diameter is any chord which passes through the conic's centre. A diameter of an ellipse is any line passing through the centre of the ellipse. [7] Half of any such diameter may be called a semidiameter, although this term is most often a synonym for the radius of a circle or sphere. [8] The longest diameter is called the ...
The ratio of the circumference of any circle to its diameter is greater than but less than . This approximates what we now call the mathematical constant π . He found these bounds on the value of π by inscribing and circumscribing a circle with two similar 96-sided regular polygons .
Since the diameter is twice the radius, the "missing" part of the diameter is (2r − x) in length. Using the fact that one part of one chord times the other part is equal to the same product taken along a chord intersecting the first chord, we find that (2r − x)x = (y / 2) 2. Solving for r, we find the required result.
Ptolemy used a circle of diameter 120, and gave chord lengths accurate to two sexagesimal (base sixty) digits after the integer part. [2] The chord function is defined geometrically as shown in the picture. The chord of an angle is the length of the chord between two points on a unit circle separated by that central angle.
The angular diameter, angular size, apparent diameter, or apparent size is an angular separation (in units of angle) describing how large a sphere or circle appears from a given point of view. In the vision sciences , it is called the visual angle , and in optics , it is the angular aperture (of a lens ).
As the definition of the unit contains π, it is easy to calculate area values in circular mils when the diameter in mils is known. The area in circular mils, A, of a circle with a diameter of d mils, is given by the formula: {} = {}.
The hydraulic diameter, D H, is a commonly used term when handling flow in non-circular tubes and channels. Using this term, one can calculate many things in the same way as for a round tube. When the cross-section is uniform along the tube or channel length, it is defined as [1] [2] =, where
Let A′ be the point opposite A on the circle, so that A′A is a diameter, and A′AB is an inscribed triangle on a diameter. By Thales' theorem, this is a right triangle with right angle at B. Let the length of A′B be c n, which we call the complement of s n; thus c n 2 +s n 2 = (2r) 2. Let C bisect the arc from A to B, and let C′ be the ...