When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Polynomial-time reduction - Wikipedia

    en.wikipedia.org/wiki/Polynomial-time_reduction

    In computational complexity theory, a polynomial-time reduction is a method for solving one problem using another. One shows that if a hypothetical subroutine solving the second problem exists, then the first problem can be solved by transforming or reducing it to inputs for the second problem and calling the subroutine one or more times.

  3. Polynomial-time counting reduction - Wikipedia

    en.wikipedia.org/wiki/Polynomial-time_counting...

    A polynomial-time counting reduction is usually used to transform instances of a known-hard problem into instances of another problem that is to be proven hard. It consists of two functions f {\displaystyle f} and g {\displaystyle g} , both of which must be computable in polynomial time .

  4. Reduction (complexity) - Wikipedia

    en.wikipedia.org/wiki/Reduction_(complexity)

    That reduction function must be a computable function. In particular, we often show that a problem P is undecidable by showing that the halting problem reduces to P. The complexity classes P, NP and PSPACE are closed under (many-one, "Karp") polynomial-time reductions. The complexity classes L, NL, P, NP and PSPACE are closed under log-space ...

  5. PTAS reduction - Wikipedia

    en.wikipedia.org/wiki/PTAS_reduction

    In computational complexity theory, a PTAS reduction is an approximation-preserving reduction that is often used to perform reductions between solutions to optimization problems. It preserves the property that a problem has a polynomial time approximation scheme (PTAS) and is used to define completeness for certain classes of optimization ...

  6. Gadget (computer science) - Wikipedia

    en.wikipedia.org/wiki/Gadget_(computer_science)

    The standard definition of NP-completeness involves polynomial time many-one reductions: a problem in NP is by definition NP-complete if every other problem in NP has a reduction of this type to it, and the standard way of proving that a problem in NP is NP-complete is to find a polynomial time many-one reduction from a known NP-complete ...

  7. Many-one reduction - Wikipedia

    en.wikipedia.org/wiki/Many-one_reduction

    A polynomial-time many-one reduction from a problem A to a problem B (both of which are usually required to be decision problems) is a polynomial-time algorithm for transforming inputs to problem A into inputs to problem B, such that the transformed problem has the same output as the original problem.

  8. Karmarkar's algorithm - Wikipedia

    en.wikipedia.org/wiki/Karmarkar's_algorithm

    Algorithm Affine-Scaling . Since the actual algorithm is rather complicated, researchers looked for a more intuitive version of it, and in 1985 developed affine scaling, a version of Karmarkar's algorithm that uses affine transformations where Karmarkar used projective ones, only to realize four years later that they had rediscovered an algorithm published by Soviet mathematician I. I. Dikin ...

  9. NEXPTIME - Wikipedia

    en.wikipedia.org/wiki/NEXPTIME

    A decision problem is NEXPTIME-complete if it is in NEXPTIME, and every problem in NEXPTIME has a polynomial-time many-one reduction to it. In other words, there is a polynomial-time algorithm that transforms instances of one to instances of the other with the same answer. Problems that are NEXPTIME-complete might be thought of as the hardest ...