When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Focal length - Wikipedia

    en.wikipedia.org/wiki/Focal_length

    The focal point F and focal length f of a positive (convex) lens, a negative (concave) lens, a concave mirror, and a convex mirror. The focal length of an optical system is a measure of how strongly the system converges or diverges light; it is the inverse of the system's optical power.

  3. Vergence (optics) - Wikipedia

    en.wikipedia.org/wiki/Vergence_(optics)

    A convex lens or concave mirror will cause parallel rays to focus, converging toward a point. Beyond that focal point, the rays diverge. Conversely, a concave lens or convex mirror will cause parallel rays to diverge. Light does not actually consist of imaginary rays and light sources are not single-point sources, thus vergence is typically ...

  4. Lens - Wikipedia

    en.wikipedia.org/wiki/Lens

    If an object is located at the front focal point of the system, then its image made by the system is located infinitely far way to the right (i.e., light rays from the object is collimated after the system). To do this, the image of the 1st lens is located at the focal point of the 2nd lens, i.e., =.

  5. Real image - Wikipedia

    en.wikipedia.org/wiki/Real_image

    A real image occurs at points where rays actually converge, whereas a virtual image occurs at points that rays appear to be diverging from. Real images can be produced by concave mirrors and converging lenses, only if the object is placed further away from the mirror/lens than the focal point, and this real image is inverted. As the object ...

  6. Cardinal point (optics) - Wikipedia

    en.wikipedia.org/wiki/Cardinal_point_(optics)

    The EFL is the distance from the rear nodal point to the rear focal point. The power of a lens is equal to 1/EFL or n ′ /f ′. For collimated light, a lens could be placed in air at the second nodal point of an optical system to give the same paraxial properties as an original lens system with an image in fluid.

  7. Camera lens - Wikipedia

    en.wikipedia.org/wiki/Camera_lens

    The camera equation, or G#, is the ratio of the radiance reaching the camera sensor to the irradiance on the focal plane of the camera lens. [8] The maximum usable aperture of a lens is specified as the focal ratio or f-number, defined as the lens's focal length divided by the effective aperture (or entrance pupil), a dimensionless number. The ...

  8. Optics - Wikipedia

    en.wikipedia.org/wiki/Optics

    This is the lens's front focal point. Rays from an object at a finite distance are associated with a virtual image that is closer to the lens than the focal point, and on the same side of the lens as the object. The closer the object is to the lens, the closer the virtual image is to the lens.

  9. Focus (optics) - Wikipedia

    en.wikipedia.org/wiki/Focus_(optics)

    For a lens, or a spherical or parabolic mirror, it is a point onto which collimated light parallel to the axis is focused. Since light can pass through a lens in either direction, a lens has two focal points – one on each side. The distance in air from the lens or mirror's principal plane to the focus is called the focal length.