Ad
related to: automatic speech recognition with transformer and switch diagram pdf
Search results
Results From The WOW.Com Content Network
Whisper is a machine learning model for speech recognition and transcription, created by OpenAI and first released as open-source software in September 2022. [2]It is capable of transcribing speech in English and several other languages, and is also capable of translating several non-English languages into English. [1]
RWTH ASR (short RASR) is a proprietary speech recognition toolkit. The toolkit includes newly developed speech recognition technology for the development of automatic speech recognition systems. It has been developed by the Human Language Technology and Pattern Recognition Group at RWTH Aachen University .
Speech recognition is an interdisciplinary subfield of computer science and computational linguistics that develops methodologies and technologies that enable the recognition and translation of spoken language into text by computers. It is also known as automatic speech recognition (ASR), computer speech recognition or speech-to-text (STT).
A spoken dialog system (SDS) is a computer system able to converse with a human with voice.It has two essential components that do not exist in a written text dialog system: a speech recognizer and a text-to-speech module (written text dialog systems usually use other input systems provided by an OS).
Conformer [42] and later Whisper [106] follow the same pattern for speech recognition, first turning the speech signal into a spectrogram, which is then treated like an image, i.e. broken down into a series of patches, turned into vectors and treated like tokens in a standard transformer.
High-level schematic diagram of BERT. It takes in a text, tokenizes it into a sequence of tokens, add in optional special tokens, and apply a Transformer encoder. The hidden states of the last layer can then be used as contextual word embeddings. BERT is an "encoder-only" transformer architecture. At a high level, BERT consists of 4 modules:
Transformer architecture is now used in many generative models that contribute to the ongoing AI boom. In language modelling, ELMo (2018) was a bi-directional LSTM that produces contextualized word embeddings, improving upon the line of research from bag of words and word2vec. It was followed by BERT (2018), an encoder-only Transformer model. [33]
Unlike feedforward neural networks, which process data in a single pass, RNNs process data across multiple time steps, making them well-adapted for modelling and processing text, speech, and time series. [1] The building block of RNNs is the recurrent unit. This unit maintains a hidden state, essentially a form of memory, which is updated at ...
Ad
related to: automatic speech recognition with transformer and switch diagram pdf