Ads
related to: st 5 thermal expansion tank
Search results
Results From The WOW.Com Content Network
An expansion tank or expansion vessel is a small tank used to protect closed water heating systems and domestic hot water systems from excessive pressure. The tank is partially filled with air, whose compressibility cushions shock caused by water hammer [citation needed] and absorbs excess water pressure caused by thermal expansion. [1]
A number of materials contract on heating within certain temperature ranges; this is usually called negative thermal expansion, rather than "thermal contraction".For example, the coefficient of thermal expansion of water drops to zero as it is cooled to 3.983 °C (39.169 °F) and then becomes negative below this temperature; this means that water has a maximum density at this temperature, and ...
Solar heat is clean and renewable. This is the most modern system. Increasingly, solar powered water heaters are being used. Their solar thermal collectors are installed outside dwellings, typically on the roof or walls or nearby, and the potable hot water storage tank is typically a pre-existing or new conventional water heater, or a water heater specifically designed for solar thermal.
A thermal expansion valve or thermostatic expansion valve (often abbreviated as TEV, TXV, or TX valve) is a component in vapor-compression refrigeration and air conditioning systems that controls the amount of refrigerant released into the evaporator and is intended to regulate the superheat of the refrigerant that flows out of the evaporator ...
A Horton sphere (sometimes spelled Hortonsphere), also referred to as a spherical tank or simply sphere, is a spherical pressure vessel, which is used for industrial-scale storage of liquefied gases. Example of materials that can be stored in Horton spheres are liquefied petroleum gas (LPG), liquefied natural gas (LNG), and anhydrous ammonia .
Details of furnace and expansion tube from Perkins' 1838 Patent. Perkins' 1832 apparatus distributed water at 200 degrees Celsius (392 °F) through small diameter pipes at high pressure. A crucial invention to make the system viable was the thread screwed joint, that allowed the joint between the pipes to bear a similar pressure to the pipe itself.