When.com Web Search

  1. Ad

    related to: square matrix identity calculator with steps and terms worksheet

Search results

  1. Results From The WOW.Com Content Network
  2. Identity matrix - Wikipedia

    en.wikipedia.org/wiki/Identity_matrix

    In linear algebra, the identity matrix of size is the square matrix with ones on the main diagonal and zeros elsewhere. It has unique properties, for example when the identity matrix represents a geometric transformation, the object remains unchanged by the transformation. In other contexts, it is analogous to multiplying by the number 1.

  3. Square matrix - Wikipedia

    en.wikipedia.org/wiki/Square_matrix

    The entries form the main diagonal of a square matrix. For instance, the main diagonal of the 4×4 matrix above contains the elements a 11 = 9, a 22 = 11, a 33 = 4, a 44 = 10. In mathematics, a square matrix is a matrix with the same number of rows and columns. An n-by-n matrix is known as a square matrix of order .

  4. Trace identity - Wikipedia

    en.wikipedia.org/wiki/Trace_identity

    The Cayley–Hamilton theorem says that every square matrix satisfies its own characteristic polynomial.This also implies that all square matrices satisfy ⁡ ⁡ + + () = where the coefficients are given by the elementary symmetric polynomials of the eigenvalues of A.

  5. Matrix exponential - Wikipedia

    en.wikipedia.org/wiki/Matrix_exponential

    We denote the n×n identity matrix by I and the zero matrix by 0. The matrix exponential satisfies the following properties. [2] We begin with the properties that are immediate consequences of the definition as a power series: e 0 = I; exp(X T) = (exp X) T, where X T denotes the transpose of X. exp(X ∗) = (exp X) ∗, where X ∗ denotes the ...

  6. Trace (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Trace_(linear_algebra)

    In general, given some linear map f : V → V (where V is a finite-dimensional vector space), we can define the trace of this map by considering the trace of a matrix representation of f, that is, choosing a basis for V and describing f as a matrix relative to this basis, and taking the trace of this square matrix.

  7. Cauchy–Binet formula - Wikipedia

    en.wikipedia.org/wiki/Cauchy–Binet_formula

    If A is a real m×n matrix, then det(A A T) is equal to the square of the m-dimensional volume of the parallelotope spanned in R n by the m rows of A. Binet's formula states that this is equal to the sum of the squares of the volumes that arise if the parallelepiped is orthogonally projected onto the m -dimensional coordinate planes (of which ...

  8. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    The identity matrices (which are the square matrices whose entries are zero outside of the main diagonal and 1 on the main diagonal) are identity elements of the matrix product. It follows that the n × n matrices over a ring form a ring, which is noncommutative except if n = 1 and the ground ring is commutative.

  9. Difference of two squares - Wikipedia

    en.wikipedia.org/wiki/Difference_of_two_squares

    The resulting identity is one of the most commonly used in mathematics. Among many uses, it gives a simple proof of the AM–GM inequality in two variables. The proof holds in any commutative ring. Conversely, if this identity holds in a ring R for all pairs of elements a and b, then R is commutative. To see this, apply the distributive law to ...