When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Glycogen phosphorylase - Wikipedia

    en.wikipedia.org/wiki/Glycogen_phosphorylase

    Since glucose production in the liver has been shown to increase in type 2 diabetes patients, [11] inhibiting the release of glucose from the liver's glycogen's supplies appears to be a valid approach. The cloning of the human liver glycogen phosphorylase (HLGP) revealed a new allosteric binding site near the subunit interface that is not ...

  3. Glucose 6-phosphate - Wikipedia

    en.wikipedia.org/wiki/Glucose_6-phosphate

    The cleaved molecule is in the form of glucose 1-phosphate, which can be converted into G6P by phosphoglucomutase. Next, the phosphoryl group on G6P can be cleaved by glucose 6-phosphatase so that a free glucose can be formed. This free glucose can pass through membranes and can enter the bloodstream to travel to other places in the body.

  4. Binding site - Wikipedia

    en.wikipedia.org/wiki/Binding_site

    Glucose binds to hexokinase in the active site at the beginning of glycolysis. In biochemistry and molecular biology, a binding site is a region on a macromolecule such as a protein that binds to another molecule with specificity. [1] The binding partner of the macromolecule is often referred to as a ligand. [2]

  5. Chemotaxis - Wikipedia

    en.wikipedia.org/wiki/Chemotaxis

    The diverse features of the chemotaxis receptors and ligands allows for the possibility of selecting chemotactic responder cells with a simple chemotaxis assay By chemotactic selection, we can determine whether a still-uncharacterized molecule acts via the long- or the short-term receptor pathway. [64]

  6. Glycolysis - Wikipedia

    en.wikipedia.org/wiki/Glycolysis

    Cellular uptake of glucose occurs in response to insulin signals, and glucose is subsequently broken down through glycolysis, lowering blood sugar levels. However, insulin resistance or low insulin levels seen in diabetes result in hyperglycemia, where glucose levels in the blood rise and glucose is not properly taken up by cells.

  7. Polar surface area - Wikipedia

    en.wikipedia.org/wiki/Polar_surface_area

    Molecules with a polar surface area of greater than 140 angstroms squared (Å 2) tend to be poor at permeating cell membranes. [1] For molecules to penetrate the blood–brain barrier (and thus act on receptors in the central nervous system), a PSA less than 90 Å 2 is usually needed. [2] TPSA is a valuable tool in drug discovery and development.

  8. Glucose uptake - Wikipedia

    en.wikipedia.org/wiki/Glucose_uptake

    GLUT4 has a Km value for glucose of about 5 mM, which as stated above is the normal blood glucose level in healthy individuals. GLUT4 is the most abundant glucose transporter in skeletal muscle and is thus considered to be rate limiting for glucose uptake and metabolism in resting muscles. [8]

  9. Glucose 1-phosphate - Wikipedia

    en.wikipedia.org/wiki/Glucose_1-phosphate

    [1] [2] [3] One reason that cells form glucose 1-phosphate instead of glucose during glycogen breakdown is that the very polar phosphorylated glucose cannot leave the cell membrane and so is marked for intracellular catabolism. Phosphoglucomutase-1 deficiency is known as glycogen storage disease type 14 (GSD XIV). [4]