Search results
Results From The WOW.Com Content Network
If the presynaptic vesicles are released at a faster rate into the synaptic cleft than re-uptake can recycle them, synaptic fatigue begins to occur. Synaptic fatigue , or short-term synaptic depression , is an activity-dependent form of short term synaptic plasticity that results in the temporary inability of neurons to fire and therefore ...
Neurons communicate with one another via synapses and affect the timing of spike trains in the post-synaptic neurons. Depending on the properties of the connection, such as the coupling strength, time delay and whether coupling is excitatory or inhibitory , the spike trains of the interacting neurons may become synchronized . [ 37 ]
Neurons form networks through which nerve impulses travels, each neuron often making numerous connections with other cells of neurons. These electrical signals may be excitatory or inhibitory, and, if the total of excitatory influences exceeds that of the inhibitory influences, the neuron will generate a new action potential at its axon hillock ...
A hypercomplex cell (currently called an end-stopped cell) is a type of visual processing neuron in the mammalian cerebral cortex.Initially discovered by David Hubel and Torsten Wiesel in 1965, hypercomplex cells are defined by the property of end-stopping, which is a decrease in firing strength with increasingly larger stimuli.
Each gap junction (sometimes called a nexus) contains numerous gap junction channels that cross the plasma membranes of both cells. [11] With a lumen diameter of about 1.2 to 2.0 nm, [2] [12] the pore of a gap junction channel is wide enough to allow ions and even medium-size molecules like signaling molecules to flow from one cell to the next, [2] [13] thereby connecting the two cells' cytoplasm.
These up-and-down cycles are known as action potentials. In some types of neurons, the entire up-and-down cycle takes place in a few thousandths of a second. In muscle cells, a typical action potential lasts about a fifth of a second. In plant cells, an action potential may last three seconds or more. [4]
They are one of the major factors in long-term potentiation. A dendritic spike is initiated in the same manner as that of an axonal action potential. Depolarization of the dendritic membrane causes sodium and potassium voltage-gated ion channels to open. The influx of sodium ions causes an increase in voltage.
Synaptic potentials are small and many are needed to add up to reach the threshold. This means a single EPSP/IPSP is typically not enough to trigger an action potential. The two ways that synaptic potentials can add up to potentially form an action potential are spatial summation and temporal summation. [5]