Search results
Results From The WOW.Com Content Network
These types were left out of the C++ standard; similar containers were standardized in C++11, but with different names (unordered_set and unordered_map). Other types of containers bitset stores series of bits similar to a fixed-sized vector of bools. Implements bitwise operations and lacks iterators. Not a sequence. Provides random access. valarray
The number 0, the strings "0" and "", the empty list (), and the special value undef evaluate to false. [8] All else evaluates to true. Lua has a Boolean data type, but non-Boolean values can also behave as Booleans. The non-value nil evaluates to false, whereas every other data type value evaluates to true.
In C++, associative containers are a group of class templates in the standard library of the C++ programming language that implement ordered associative arrays. [1] Being templates , they can be used to store arbitrary elements, such as integers or custom classes.
Structure of arrays (SoA) is a layout separating elements of a record (or 'struct' in the C programming language) into one parallel array per field. [1] The motivation is easier manipulation with packed SIMD instructions in most instruction set architectures, since a single SIMD register can load homogeneous data, possibly transferred by a wide internal datapath (e.g. 128-bit).
The following containers are defined in the current revision of the C++ standard: array, vector, list, forward_list, deque. Each of these containers implements different algorithms for data storage, which means that they have different speed guarantees for different operations: [1] array implements a compile-time non-resizable array.
In Java associative arrays are implemented as "maps", which are part of the Java collections framework. Since J2SE 5.0 and the introduction of generics into Java, collections can have a type specified; for example, an associative array that maps strings to strings might be specified as follows:
There are three ways in which the elements of an array can be indexed: 0 (zero-based indexing) The first element of the array is indexed by subscript of 0. [8] 1 (one-based indexing) The first element of the array is indexed by subscript of 1. n (n-based indexing) The base index of an array can be freely chosen.
A = round (rand (3, 4, 5) * 10) % 3x4x5 three-dimensional or cubic array > A (:,:, 3) % 3x4 two-dimensional array along first and second dimensions ans = 8 3 5 7 8 9 1 4 4 4 2 5 > A (:, 2: 3, 3) % 3x2 two-dimensional array along first and second dimensions ans = 3 5 9 1 4 2 > A (2: end,:, 3) % 2x4 two-dimensional array using the 'end' keyword ...