Search results
Results From The WOW.Com Content Network
The prompt neutron lifetime in a modern thermal reactor is about 10 −4 seconds, thus it is not feasible to control reactor behavior with prompt neutrons alone. Reactor time behavior can be characterized by weighing the prompt and delayed neutron yield fractions to obtain the average neutron lifetime, Λ=l/k, or the mean generation time ...
The mere fact that an assembly is supercritical does not guarantee that it contains any free neutrons at all. At least one neutron is required to "strike" a chain reaction, and if the spontaneous fission rate is sufficiently low it may take a long time (in 235 U reactors, as long as many minutes) before a chance neutron encounter starts a chain reaction even if the reactor is supercritical.
In 1942, the first artificial [note 1] critical nuclear reactor, Chicago Pile-1, was built at the University of Chicago, by a team led by Enrico Fermi. [4] From 1944, with the goal of weapons-grade plutonium production for fission bombs, the first large-scale reactors were operated at the American Hanford Site.
A: So the reactor is fueled, the reactor is closed, bolted shut. Control rods are slowly being pulled out. The control rods absorb neutrons without undergoing any nuclear reactions.
k eff > 1, supercritical: the neutron density is increasing with time. In the case of a nuclear reactor, neutron flux and power density are proportional, hence during reactor start-up k eff > 1, during reactor operation k eff = 1 and k eff < 1 at reactor shutdown.
Thus, by widening the margins of non-operation and supercriticality and allowing more time to regulate the reactor, the delayed neutrons are essential to inherent reactor safety, even in reactors requiring active control. The lower percentage [3] of delayed neutrons makes the use of large percentages of plutonium in nuclear reactors more ...
The multiplication factor, k, is defined as (see nuclear chain reaction): k = number of neutrons in one generation / number of neutrons in preceding generation . If k is greater than 1, the chain reaction is supercritical, and the neutron population will grow exponentially.
Geometric buckling is a measure of neutron leakage and material buckling is a measure of the difference between neutron production and neutron absorption. [1] When nuclear fission occurs inside of a nuclear reactor, neutrons are produced. [1] These neutrons then, to state it simply, either react with the fuel in the reactor or escape from the ...