Search results
Results From The WOW.Com Content Network
The append procedure takes zero or more (linked) lists as arguments, and returns the concatenation of these lists. ( append ' ( 1 2 3 ) ' ( a b ) ' () ' ( 6 )) ;Output: (1 2 3 a b 6) Since the append procedure must completely copy all of its arguments except the last, both its time and space complexity are O( n ) for a list of n {\displaystyle ...
A singly-linked list structure, implementing a list with three integer elements. The term list is also used for several concrete data structures that can be used to implement abstract lists, especially linked lists and arrays. In some contexts, such as in Lisp programming, the term list may refer specifically to a linked list rather than an array.
The following list contains syntax examples of how a range of element of an array can be accessed. In the following table: first – the index of the first element in the slice; last – the index of the last element in the slice; end – one more than the index of last element in the slice; len – the length of the slice (= end - first)
Python uses the following syntax to express list comprehensions over finite lists: S = [ 2 * x for x in range ( 100 ) if x ** 2 > 3 ] A generator expression may be used in Python versions >= 2.4 which gives lazy evaluation over its input, and can be used with generators to iterate over 'infinite' input such as the count generator function which ...
The dynamic array has performance similar to an array, with the addition of new operations to add and remove elements: Getting or setting the value at a particular index (constant time) Iterating over the elements in order (linear time, good cache performance) Inserting or deleting an element in the middle of the array (linear time)
Suppose that "L" is a variable pointing to the last node of a circular linked list (or null if the list is empty). To append "newNode" to the end of the list, one may do insertAfter(L, newNode) L := newNode To insert "newNode" at the beginning of the list, one may do insertAfter(L, newNode) if L = null L := newNode
In Raku, a sister language to Perl, for must be used to traverse elements of a list (foreach is not allowed). The expression which denotes the collection to loop over is evaluated in list-context, but not flattened by default, and each item of the resulting list is, in turn, aliased to the loop variable(s). List literal example:
Here, the list [0..] represents , x^2>3 represents the predicate, and 2*x represents the output expression.. List comprehensions give results in a defined order (unlike the members of sets); and list comprehensions may generate the members of a list in order, rather than produce the entirety of the list thus allowing, for example, the previous Haskell definition of the members of an infinite list.