Search results
Results From The WOW.Com Content Network
Gametes (sperm and ova) are haploid cells. The haploid gametes produced by most organisms combine to form a zygote with n pairs of chromosomes, i.e. 2n chromosomes in total. The chromosomes in each pair, one of which comes from the sperm and one from the egg, are said to be homologous. Cells and organisms with pairs of homologous chromosomes ...
Mechanically, the process is similar to mitosis, though its genetic results are fundamentally different. The result is the production of four haploid cells (n chromosomes; 23 in humans) from the two haploid cells (with n chromosomes, each consisting of two sister chromatids) [clarification needed] produced in meiosis I. The four main steps of ...
Haploidisation is the process of halving the chromosomal content of a cell, producing a haploid cell. Within the normal reproductive cycle, haploidisation is one of the major functional consequences of meiosis, the other being a process of chromosomal crossover that mingles the genetic content of the parental chromosomes. [1]
A haplotype (haploid genotype) is a group of alleles in an organism that are inherited together from a single parent. [1] [2] Many organisms contain genetic material which is inherited from two parents. Normally these organisms have their DNA organized in two sets of pairwise similar chromosomes. The offspring gets one chromosome in each pair ...
The two chromosomes which pair are referred to as non-sister chromosomes, since they did not arise simply from the replication of a parental chromosome. Recombination between non-sister chromosomes at meiosis is known to be a recombinational repair process that can repair double-strand breaks and other types of double-strand damage. [ 2 ]
In eukaryotes, there are two distinct types of cell division: a vegetative division , producing daughter cells genetically identical to the parent cell, and a cell division that produces haploid gametes for sexual reproduction , reducing the number of chromosomes from two of each type in the diploid parent cell to one of each type in the ...
This represents the size of a composite genome based on data from multiple individuals but it is a good indication of the typical amount of DNA in a haploid set of chromosomes because the Y chromosome is quite small. [7] Most human cells are diploid so they contain twice as much DNA (~6.2 billion base pairs).
These somatic cells are diploid, containing two copies of each chromosome, whereas germ cells are haploid, as they only contain one copy of each chromosome (in preparation for fertilisation). Although under normal circumstances all somatic cells in an organism contain identical DNA , they develop a variety of tissue-specific characteristics.