Search results
Results From The WOW.Com Content Network
Subsurface flow, in hydrology, is the flow of water beneath Earth's surface as part of the water cycle. In the water cycle, when precipitation falls on the Earth's land, some of the water flows on the surface forming streams and rivers. The remaining water, through infiltration, penetrates the soil traveling underground, hydrating the vadose ...
If the water table is at depth d w in fine-grained soils, then the pore pressure at the ground surface is: [4] =, where: p g is the unsaturated pore water pressure (Pa) at ground level, g w is the unit weight of water (kN/m 3), = / d w is the depth of the water table (m),
[51] [52] In tropical soils, when the soil has been deprived of vegetation (e.g. by deforestation) and thereby is submitted to intense evaporation, the upward capillary movement of water, which has dissolved iron and aluminum salts, is responsible for the formation of a superficial hard pan of laterite or bauxite, respectively, which is ...
Aluminum is the third most abundant element in the lithosphere at 82,000 ppm. It occurs in low levels, 0.9 ppm, in humans. [1] Aluminum is known to be an ecotoxicant and expected to be a health risk to people. Global primary production (GPP) of aluminum was about 52 million tons in 2013 and remains one of the world's most important metals.
The ocean plays a key role in the water cycle as it is the source of 86% of global evaporation. [2] The water cycle involves the exchange of energy, which leads to temperature changes. When water evaporates, it takes up energy from its surroundings and cools the environment. When it condenses, it releases energy and warms the environment.
The maximum rate at that water can enter soil in a given condition is the infiltration capacity. If the arrival of the water at the soil surface is less than the infiltration capacity, it is sometimes analyzed using hydrology transport models, mathematical models that consider infiltration, runoff, and channel flow to predict river flow rates ...
Cation-exchange capacity (CEC) is a measure of how many cations can be retained on soil particle surfaces. [1] Negative charges on the surfaces of soil particles bind positively-charged atoms or molecules (cations), but allow these to exchange with other positively charged particles in the surrounding soil water. [2]
The soil bulk density of cultivated loam is about 1.1 to 1.4 g/cm 3 (for comparison water is 1.0 g/cm 3). [48] Contrary to particle density, soil bulk density is highly variable for a given soil, with a strong causal relationship with soil biological activity and management strategies. [49]