When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Particulate matter sampler - Wikipedia

    en.wikipedia.org/wiki/Particulate_matter_sampler

    Modern particulate samplers use a volumetric flow control system that pulls air through the particle separator at the velocity required to achieve the desired cutpoint. For air pollution applications, the definition of "particulate" does not include uncombined water , and water from a particulate sample must be removed before it is weighed.

  3. Bernoulli's principle - Wikipedia

    en.wikipedia.org/wiki/Bernoulli's_principle

    The basis of a carburetor used in many reciprocating engines is a throat in the air flow to create a region of low pressure to draw fuel into the carburetor and mix it thoroughly with the incoming air. The low pressure in the throat can be explained by Bernoulli's principle, where air in the throat is moving at its fastest speed and therefore ...

  4. Venturi effect - Wikipedia

    en.wikipedia.org/wiki/Venturi_effect

    The upstream static pressure (1) is higher than in the constriction (2), and the fluid speed at "1" is lower than at "2", because the cross-sectional area at "1" is greater than at "2". A flow of air through a pitot tube Venturi meter, showing the columns connected in a manometer and partially filled with water. The meter is "read" as a ...

  5. Stokes's law of sound attenuation - Wikipedia

    en.wikipedia.org/wiki/Stokes's_law_of_sound...

    In acoustics, Stokes's law of sound attenuation is a formula for the attenuation of sound in a Newtonian fluid, such as water or air, due to the fluid's viscosity.It states that the amplitude of a plane wave decreases exponentially with distance traveled, at a rate α given by = where η is the dynamic viscosity coefficient of the fluid, ω is the sound's angular frequency, ρ is the fluid ...

  6. Dynamic pressure - Wikipedia

    en.wikipedia.org/wiki/Dynamic_pressure

    Dynamic pressure is one of the terms of Bernoulli's equation, which can be derived from the conservation of energy for a fluid in motion. [1] At a stagnation point the dynamic pressure is equal to the difference between the stagnation pressure and the static pressure, so the dynamic pressure in a flow field can be measured at a stagnation point ...

  7. Pascal's law - Wikipedia

    en.wikipedia.org/wiki/Pascal's_law

    Pressure in water and air. Pascal's law applies for fluids. Pascal's principle is defined as: A change in pressure at any point in an enclosed incompressible fluid at rest is transmitted equally and undiminished to all points in all directions throughout the fluid, and the force due to the pressure acts at right angles to the enclosing walls.

  8. Speed of sound - Wikipedia

    en.wikipedia.org/wiki/Speed_of_sound

    An illustrative example of the two effects is that sound travels only 4.3 times faster in water than air, despite enormous differences in compressibility of the two media. The reason is that the greater density of water, which works to slow sound in water relative to the air, nearly makes up for the compressibility differences in the two media.

  9. Impact pressure - Wikipedia

    en.wikipedia.org/wiki/Impact_pressure

    An air data computer with inputs of pitot and static pressures is able to provide a Mach number and, if static temperature is known, true airspeed. [citation needed] Some authors in the field of compressible flows use the term dynamic pressure or compressible dynamic pressure instead of impact pressure. [3] [4]