Search results
Results From The WOW.Com Content Network
The Criegee oxidation is a glycol cleavage reaction in which vicinal diols are oxidized to form ketones and aldehydes using lead tetraacetate. It is analogous to the use of periodate (Malaprade reaction) but uses a milder oxidant. This oxidation was discovered by Rudolf Criegee and coworkers and first reported in 1931 using ethylene glycol as ...
Another reagent is lead tetraacetate (Pb(OAc) 4). [4] These I- and Pb-based methods are called the Malaprade reaction and Criegee oxidation, respectively. The former is favored for aqueous solutions, the latter for nonaqueous solutions. [1] Cyclic intermediate are invariably invoked. The ring then fragments, with cleavage of the carbon–carbon ...
Lead(IV) acetate or lead tetraacetate is an metalorganic compound with chemical formula Pb(C 2 H 3 O 2) 4. It is a colorless solid that is soluble in nonpolar, organic solvents, indicating that it is not a salt. It is degraded by moisture and is typically stored with additional acetic acid. The compound is used in organic synthesis. [2]
Glucose can be shortened by oxidation and decarboxylation to generate arabinose, a reaction known as the Ruff degradation. [1] To increase the glucose carbon chain, a series of chemical reactions can be used to add one more carbon at the aldehyde end of glucose; this process is known as the Kiliani–Fischer synthesis .
From the complete oxidation of one glucose molecule to carbon dioxide and oxidation of all the reduced coenzymes. Although there is a theoretical yield of 38 ATP molecules per glucose during cellular respiration, such conditions are generally not realized because of losses such as the cost of moving pyruvate (from glycolysis), phosphate, and ...
Typically, the complete breakdown of one molecule of glucose by aerobic respiration (i.e. involving glycolysis, the citric-acid cycle and oxidative phosphorylation, the last providing the most energy) is usually about 30–32 molecules of ATP. [16] Oxidation of one gram of carbohydrate yields approximately 4 kcal of energy. [3]
If, for example, D-glucose (an Aldose) rearranges to D-fructose, the ketose, the stereochemical configuration is lost in the enol form. In the chemical reaction the enol can be protonated from two faces, resulting in the backformation of glucose or the formation of the epimer D-mannose. The final product is a mix of D-glucose, D-fructose and D ...
It generates NADPH and pentoses (five-carbon sugars) as well as ribose 5-phosphate, a precursor for the synthesis of nucleotides. [1] While the pentose phosphate pathway does involve oxidation of glucose, its primary role is anabolic rather than catabolic. The pathway is especially important in red blood cells (erythrocytes).