Ads
related to: pull faces definition geometry worksheet printable grade
Search results
Results From The WOW.Com Content Network
In solid geometry, a face is a flat surface (a planar region) that forms part of the boundary of a solid object; [1] a three-dimensional solid bounded exclusively by faces is a polyhedron. A face can be finite like a polygon or circle, or infinite like a half-plane or plane.
A convex polyhedron whose faces are regular polygons is known as a Johnson solid, or sometimes as a Johnson–Zalgaller solid [3]. Some authors exclude uniform polyhedra from the definition. A uniform polyhedron is a polyhedron in which the faces are regular and they are isogonal ; examples include Platonic and Archimedean solids as well as ...
A Johnson solid is a convex polyhedron whose faces are all regular polygons. [2] Here, a polyhedron is said to be convex if the shortest path between any two of its vertices lies either within its interior or on its boundary, none of its faces are coplanar (meaning they do not share the same plane, and do not "lie flat"), and none of its edges are colinear (meaning they are not segments of the ...
This is left blank for non-orientable polyhedra and hemipolyhedra (polyhedra with faces passing through their centers), for which the density is not well-defined. Note on Vertex figure images: The white polygon lines represent the "vertex figure" polygon. The colored faces are included on the vertex figure images help see their relations.
In three-dimensional geometry, a facet of a polyhedron is any polygon whose corners are vertices of the polyhedron, and is not a face. [1] [2] To facet a polyhedron is to find and join such facets to form the faces of a new polyhedron; this is the reciprocal process to stellation and may also be applied to higher-dimensional polytopes. [3]
In geometry, faceting (also spelled facetting) is the process of removing parts of a polygon, polyhedron or polytope, without creating any new vertices.. New edges of a faceted polyhedron may be created along face diagonals or internal space diagonals.