When.com Web Search

  1. Ads

    related to: two dimensional kinematics problems and solutions video questions grade

Search results

  1. Results From The WOW.Com Content Network
  2. Chasles' theorem (kinematics) - Wikipedia

    en.wikipedia.org/wiki/Chasles'_theorem_(kinematics)

    In kinematics, Chasles' theorem, or Mozzi–Chasles' theorem, says that the most general rigid body displacement can be produced by a screw displacement. A direct Euclidean isometry in three dimensions involves a translation and a rotation. The screw displacement representation of the isometry decomposes the translation into two components, one ...

  3. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  4. Newton–Euler equations - Wikipedia

    en.wikipedia.org/wiki/Newton–Euler_equations

    Traditionally the Newton–Euler equations is the grouping together of Euler's two laws of motion for a rigid body into a single equation with 6 components, using column vectors and matrices. These laws relate the motion of the center of gravity of a rigid body with the sum of forces and torques (or synonymously moments ) acting on the rigid body.

  5. Kinematics - Wikipedia

    en.wikipedia.org/wiki/Kinematics

    The coordinates of points in a plane are two-dimensional vectors in R 2 (two dimensional space). Rigid transformations are those that preserve the distance between any two points. The set of rigid transformations in an n-dimensional space is called the special Euclidean group on R n, and denoted SE.

  6. Kinematics equations - Wikipedia

    en.wikipedia.org/wiki/Kinematics_equations

    From this point of view the kinematics equations can be used in two different ways. The first called forward kinematics uses specified values for the joint parameters to compute the end-effector position and orientation. The second called inverse kinematics uses the position and orientation of the end-effector to compute the joint parameters ...

  7. Elastic collision - Wikipedia

    en.wikipedia.org/wiki/Elastic_collision

    Studies of two-dimensional collisions are conducted for many bodies in the framework of a two-dimensional gas. Two-dimensional elastic collision In a center of momentum frame at any time the velocities of the two bodies are in opposite directions, with magnitudes inversely proportional to the masses.

  8. Euler's three-body problem - Wikipedia

    en.wikipedia.org/wiki/Euler's_three-body_problem

    The Euler three-body problem is known by a variety of names, such as the problem of two fixed centers, the Euler–Jacobi problem, and the two-center Kepler problem. The exact solution, in the full three dimensional case, can be expressed in terms of Weierstrass's elliptic functions [ 2 ] For convenience, the problem may also be solved by ...

  9. Paden–Kahan subproblems - Wikipedia

    en.wikipedia.org/wiki/Paden–Kahan_subproblems

    Paden–Kahan subproblems are a set of solved geometric problems which occur frequently in inverse kinematics of common robotic manipulators. [1] Although the set of problems is not exhaustive, it may be used to simplify inverse kinematic analysis for many industrial robots. [2] Beyond the three classical subproblems several others have been ...