When.com Web Search

  1. Ads

    related to: necessary and sufficient conditions math problems and solutions guide

Search results

  1. Results From The WOW.Com Content Network
  2. Necessity and sufficiency - Wikipedia

    en.wikipedia.org/wiki/Necessity_and_sufficiency

    A condition can be both necessary and sufficient. For example, at present, "today is the Fourth of July" is a necessary and sufficient condition for "today is Independence Day in the United States". Similarly, a necessary and sufficient condition for invertibility of a matrix M is that M has a nonzero determinant.

  3. Hall's marriage theorem - Wikipedia

    en.wikipedia.org/wiki/Hall's_marriage_theorem

    In mathematics, Hall's marriage theorem, proved by Philip Hall (), is a theorem with two equivalent formulations.In each case, the theorem gives a necessary and sufficient condition for an object to exist:

  4. Compatibility (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Compatibility_(mechanics)

    To prove that this condition is sufficient to guarantee existence of a compatible second-order tensor field, we start with the assumption that a field exists such that =. We will integrate this field to find the vector field v {\displaystyle \mathbf {v} } along a line between points A {\displaystyle A} and B {\displaystyle B} (see Figure 2), i.e.,

  5. Specht's theorem - Wikipedia

    en.wikipedia.org/wiki/Specht's_theorem

    In mathematics, Specht's theorem gives a necessary and sufficient condition for two complex matrices to be unitarily equivalent. It is named after Wilhelm Specht, who proved the theorem in 1940. [1] Two matrices A and B with complex number entries are said to be unitarily equivalent if there exists a unitary matrix U such that B = U *AU. [2]

  6. Integrability conditions for differential systems - Wikipedia

    en.wikipedia.org/wiki/Integrability_conditions...

    The necessary and sufficient conditions for complete integrability of a Pfaffian system are given by the Frobenius theorem. One version states that if the ideal I {\displaystyle {\mathcal {I}}} algebraically generated by the collection of α i inside the ring Ω( M ) is differentially closed, in other words

  7. Sylvester's criterion - Wikipedia

    en.wikipedia.org/wiki/Sylvester's_criterion

    In mathematics, Sylvester’s criterion is a necessary and sufficient criterion to determine whether a Hermitian matrix is positive-definite. Sylvester's criterion states that a n × n Hermitian matrix M is positive-definite if and only if all the following matrices have a positive determinant: the upper left 1-by-1 corner of M,

  8. Routh–Hurwitz stability criterion - Wikipedia

    en.wikipedia.org/wiki/Routh–Hurwitz_stability...

    In the control system theory, the Routh–Hurwitz stability criterion is a mathematical test that is a necessary and sufficient condition for the stability of a linear time-invariant (LTI) dynamical system or control system. A stable system is one whose output signal is bounded; the position, velocity or energy do not increase to infinity as ...

  9. Hurwitz polynomial - Wikipedia

    en.wikipedia.org/wiki/Hurwitz_polynomial

    For a polynomial to be Hurwitz, it is necessary but not sufficient that all of its coefficients be positive (except for quadratic polynomials, which also imply sufficiency). A necessary and sufficient condition that a polynomial is Hurwitz is that it passes the Routh–Hurwitz stability criterion. A given polynomial can be efficiently tested to ...